Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Nature. 2010 Mar 11;464(7286):262-6. doi: 10.1038/nature08876.
The energy bandgap of an insulator is large enough to prevent electron excitation and electrical conduction. But in addition to charge, an electron also has spin, and the collective motion of spin can propagate-and so transfer a signal-in some insulators. This motion is called a spin wave and is usually excited using magnetic fields. Here we show that a spin wave in an insulator can be generated and detected using spin-Hall effects, which enable the direct conversion of an electric signal into a spin wave, and its subsequent transmission through (and recovery from) an insulator over macroscopic distances. First, we show evidence for the transfer of spin angular momentum between an insulator magnet Y(3)Fe(5)O(12) and a platinum film. This transfer allows direct conversion of an electric current in the platinum film to a spin wave in the Y(3)Fe(5)O(12) via spin-Hall effects. Second, making use of the transfer in a Pt/Y(3)Fe(5)O(12)/Pt system, we demonstrate that an electric current in one metal film induces voltage in the other, far distant, metal film. Specifically, the applied electric current is converted into spin angular momentum owing to the spin-Hall effect in the first platinum film; the angular momentum is then carried by a spin wave in the insulating Y(3)Fe(5)O(12) layer; at the distant platinum film, the spin angular momentum of the spin wave is converted back to an electric voltage. This effect can be switched on and off using a magnetic field. Weak spin damping in Y(3)Fe(5)O(12) is responsible for its transparency for the transmission of spin angular momentum. This hybrid electrical transmission method potentially offers a means of innovative signal delivery in electrical circuits and devices.
绝缘体的能带隙足够大,足以防止电子激发和导电。但是,除了电荷,电子还有自旋,自旋的集体运动可以在一些绝缘体中传播,从而传递信号。这种运动被称为自旋波,通常使用磁场来激发。在这里,我们展示了一种使用自旋霍尔效应产生和检测绝缘体中自旋波的方法,这种方法可以将电信号直接转换为自旋波,并通过自旋霍尔效应在宏观距离上通过(和恢复)绝缘体传输。首先,我们证明了绝缘体磁体 Y(3)Fe(5)O(12)和铂膜之间自旋角动量的传递。这种传递允许通过自旋霍尔效应将铂膜中的电流直接转换为 Y(3)Fe(5)O(12)中的自旋波。其次,利用 Pt/Y(3)Fe(5)O(12)/Pt 系统中的传递,我们证明了一个金属膜中的电流会在另一个遥远的金属膜中产生电压。具体来说,由于第一个铂膜中的自旋霍尔效应,外加电流会转换为自旋角动量;然后,角动量通过绝缘 Y(3)Fe(5)O(12)层中的自旋波携带;在遥远的铂膜中,自旋波的自旋角动量被转换回电压。这种效应可以通过磁场打开或关闭。Y(3)Fe(5)O(12)中的弱自旋阻尼使其对自旋角动量的传输具有透明性。这种混合电传输方法可能为电路和设备中的创新信号传输提供一种手段。