Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
Dalton Trans. 2010 Mar 28;39(12):3093-104. doi: 10.1039/b925262b. Epub 2010 Feb 23.
Simple dinuclear iron dithiolates such as (mu-SCH2CH2CH2S)[Fe(CO)3]2, (1) and (mu-SCH2CH2S)[Fe(CO)3]2 (2) are functional models for diiron-hydrogenases, [FeFe]-H2ases, that catalyze the reduction of protons to H2. The mechanism of H2 production with 2 as the catalyst and with both toluenesulfonic (HOTs) and acetic (HOAc) acids as the H+ source in CH3CN solvent has been examined by density functional theory (DFT). Proton dissociation constants (pKa) and electrode reduction potentials (E(o)) are directly computed and compared to the measured pKa of HOTs and HOAc acids and the experimental reduction potentials. Computations show that when the strong acid, HOTs, is used as a proton source the one-electron reduced species 2- can be protonated to form a bridging hydride complex as the most stable structure. Then, this species can be reduced and protonated to form dihydrogen and regenerate 2. This cycle produces H2 via an ECEC process at an applied potential of -1.8 V vs. Fc/Fc+. A second faster process opens for this system when the species produced at the ECEC step above is further reduced and H2 release returns the system to 2- rather than 2, an E[CECE] process. On the other hand, when the weak acid, HOAc, is the proton source a more negative applied reduction potential (-2.2 V vs. Fc/Fc+) is necessary. At this potential two one-electron reductions yield the dianion 2(2-) before the first protonation, which in this case occurs on the thiolate. Subsequent reduction and protonation form dihydrogen and regenerate 2- through an E[ECEC] process.
简单的双核铁二硫配合物,如(μ-SCH2CH2CH2S)[Fe(CO)3]2(1)和(μ-SCH2CH2S)[Fe(CO)3]2(2),是二铁-氢化酶[FeFe]-H2ase的功能模型,催化质子还原为 H2。在 CH3CN 溶剂中,以 2 为催化剂,以对甲苯磺酸(HOTs)和乙酸(HOAc)为 H+源,通过密度泛函理论(DFT)研究了 H2 的生成机制。质子离解常数(pKa)和电极还原电位(E(o))直接计算,并与 HOTs 和 HOAc 酸的实测 pKa 和实验还原电位进行比较。计算表明,当使用强酸 HOTs 作为质子源时,一电子还原物种 2-可以质子化形成桥接氢化物配合物作为最稳定结构。然后,该物种可以被还原和质子化,形成氢气,并再生 2。该循环通过在-1.8 V 相对于 Fc/Fc+的外加电位下,通过 ECEC 过程产生 H2。当上述 ECEC 步骤中产生的物种进一步还原时,该体系为该体系提供了第二个更快的过程,并且 H2 释放将体系返回到 2-而不是 2,这是一个 E[CECE]过程。另一方面,当弱酸性 HOAc 是质子源时,需要更负的外加还原电位(-2.2 V 相对于 Fc/Fc+)。在这种情况下,在第一个质子化之前,两个单电子还原产生二阴离子 2(2-),这在这种情况下发生在硫醇上。随后的还原和质子化形成氢气,并通过 E[ECEC]过程再生 2-。