School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, PR China.
Dalton Trans. 2012 Oct 21;41(39):12064-74. doi: 10.1039/c2dt30934c.
Di/mono-nuclear iron(I)/(II) complexes containing conjugated and electron-withdrawing S-to-S linkers, [{(μ-S)(2)(C(4)N(2)H(2))}Fe(2)(CO)(6)] (1), [{(μ-S)(2)(C(4)N(2)H(2))}Fe(2)(CO)(5)(PMe(3))] (1P), and [{(μ-S)(2)(C(4)N(2)H(2))}Fe(CO)(2)(PMe(3))(2)] (2) were prepared as biomimetic models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases. The N atoms in the heterocyclic pyrazines of 1 and 2 were protonated in the presence of proton acid to generate one and two hydrides, 1(NH) CF(3)SO(3)(-), 2(NH) CF(3)SO(3)(-), and 2(NH)(2) (CF(3)SO(3)(-))(2), respectively. The protonation processes were evidenced by in situ IR and NMR spectroscopy. The molecular structures of the protonated species 1(NH) CF(3)SO(3)(-) and 2(NH)(2) (CF(3)SO(3)(-))(2) together with their originating complexes and , and the mono-PMe(3) substituted diiron complex were identified by X-ray crystallography. The IR and single-crystal analysis data all suggested that the electron-withdrawing bridge, pyrazine, led to decreased electron density at the Fe centers of the model complexes, which was consistent with the electrochemical studies. The cyclic voltammograms indicated that complex exhibited a low primary reduction potential at -1.17 V vs. Fc-Fc(+) with a 270 mV positive shift compared with that of the benzene-1,2-dithiolate (bdt) bridged analogue [(μ-bdt)Fe(2)(CO)(6)]. Under the weak acid conditions, complexes 1 and 2 could electrochemically catalyze the proton reduction. More interestingly, the mononuclear ferrous complex 2 showed two catalytic peaks during the formation of hydrogen, confirming its potential as a catalyst for hydrogen production.
含共轭和吸电子 S-S 连接体的双核铁(I)/(II)配合物,[{(μ-S)(2)(C(4)N(2)H(2))}Fe(2)(CO)(6)](1),[{(μ-S)(2)(C(4)N(2)H(2))}Fe(2)(CO)(5)(PMe(3))](1P)和[{(μ-S)(2)(C(4)N(2)H(2))}Fe(CO)(2)(PMe(3))(2)](2)被制备为[FeFe]氢化酶活性位点的 2Fe2S 亚基和远端 Fe 部分的仿生模型。在质子酸存在下,1 和 2 中的杂环吡嗪中的 N 原子被质子化,分别生成一个和两个氢化物,[1(NH)](+)CF(3)SO(3)(-),[2(NH)](+)CF(3)SO(3)(-)和[2(NH)(2)](2+)(CF(3)SO(3)(-))(2)。质子化过程通过原位 IR 和 NMR 光谱得到证实。质子化物种[1(NH)](+)CF(3)SO(3)(-)和[2(NH)(2)](2+)(CF(3)SO(3)(-))(2)及其起始配合物的分子结构,以及单核取代的二铁配合物通过 X 射线晶体学确定。IR 和单晶分析数据均表明,吸电子桥联吡嗪导致模型配合物中 Fe 中心的电子密度降低,这与电化学研究一致。循环伏安法表明,与苯-1,2-二硫醇(bdt)桥联类似物[(μ-bdt)Fe(2)(CO)(6)]相比,配合物在-1.17 V 相对于 Fc-Fc(+)表现出低的一级还原电位,具有 270 mV 的正移。在弱酸条件下,配合物 1 和 2 可以电化学催化质子还原。更有趣的是,单核亚铁配合物 2 在氢气形成过程中显示出两个催化峰,证实了其作为产氢催化剂的潜力。