Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Acc Chem Res. 2010 May 18;43(5):631-41. doi: 10.1021/ar900245u.
Interest in the development of sensitive, selective, rapid, and cost-effective biosensors for biomedical analysis, environmental monitoring, and the detection of bioterrorism agents is rapidly increasing. A classic biosensor directly transduces ligand-target binding events into a measurable physical readout. More recently, researchers have proposed novel biosensing strategies that couple ligand-induced structural switching of biomolecules with advanced optical and electronic transducers. This approach has proven to be a highly general platform for the development of new biosensors. In this Account, we describe a series of electrochemical and optical nucleic acid sensors that use target-responsive DNA structures. By employing surface-confined DNA structures with appropriate redox labels, we can monitor target-induced structural switching of DNA or aptamer-specific small molecule probes by measuring electrochemical currents that are directly associated with the distance between the redox label and the electrode surface. We have also demonstrated significant improvements in sensing performance through optimization of the DNA self-assembly process at electrode surfaces or the introduction of nanomaterial-based signal amplification. Alternatively, gold nanoparticles interact differently with folded and unfolded DNA structures, which provides a visual method for detecting target-induced structural switching based on the plasmonic change of gold nanoparticles. This novel method using gold nanoparticles has proven particularly suitable for the detection of a range of small-molecule targets (e.g., cocaine) and environmentally toxic metal ions (e.g., Hg(2+)). Rational sequence design of DNA aptamers improves the sensitivity and increases the reaction kinetics. Recently, we have also designed microfluidic devices that allow rapid and portable mercury detection with the naked eye. This Account focuses on the use of bulk and nanoscale gold and DNA/aptamer molecules. We expect that researchers will further expand the analyte spectrum and improve the sensitivity and selectivity of nucleic acid sensors using functional biomolecules, such as DNAzymes, peptide aptamers and engineered proteins, and nanomaterials of different sizes, dimensions and compositions, such as carbon nanotubes, graphene, silicon nanowires, and metal nanoparticles or nanorods.
人们对开发用于生物医学分析、环境监测和生物恐怖主义制剂检测的灵敏、选择性强、快速且经济高效的生物传感器越来越感兴趣。经典的生物传感器可直接将配体-靶标结合事件转导为可测量的物理读数。最近,研究人员提出了新颖的生物传感策略,即将生物分子的配体诱导结构切换与先进的光学和电子换能器相结合。这种方法已被证明是开发新型生物传感器的高度通用平台。在本报告中,我们描述了一系列使用靶标响应 DNA 结构的电化学和光学核酸传感器。通过采用具有适当氧化还原标记的表面受限 DNA 结构,我们可以通过测量与氧化还原标记和电极表面之间的距离直接相关的电化学电流来监测 DNA 或适体特异性小分子探针的靶标诱导结构切换。我们还通过优化电极表面上的 DNA 自组装过程或引入基于纳米材料的信号放大,证明了通过优化 DNA 自组装过程或引入基于纳米材料的信号放大,显著提高了传感性能。或者,金纳米颗粒与折叠和未折叠的 DNA 结构的相互作用方式不同,这为基于金纳米颗粒的等离子体变化检测靶标诱导的结构切换提供了一种可视化方法。这种使用金纳米颗粒的新方法已被证明特别适合检测一系列小分子靶标(例如可卡因)和环境有毒金属离子(例如 Hg(2+))。DNA 适体的合理序列设计可提高灵敏度并增加反应动力学。最近,我们还设计了微流控设备,可实现肉眼快速便携的汞检测。本报告重点介绍了大块和纳米级金以及 DNA/适体分子的使用。我们期望研究人员使用功能生物分子(例如 DNA 酶、肽适体和工程蛋白以及不同尺寸、维度和组成的纳米材料,例如碳纳米管、石墨烯、硅纳米线、金属纳米颗粒或纳米棒)进一步扩展分析物的光谱范围,并提高核酸传感器的灵敏度和选择性。