Greenpharma SAS, 3 allée du titane 45100 Orléans, France.
Curr Pharm Des. 2010 May;16(15):1682-96. doi: 10.2174/138161210791164036.
A huge amount of data has been generated by decades of pharmacognosy supported by the rapid evolution of chemical, biological and computational techniques. How can we cope with this overwhelming mass of information? Reverse pharmacognosy was introduced with this aim in view. It proceeds from natural molecules to organisms that contain them via biological assays in order to identify an activity. In silico techniques and particularly inverse screening are key technologies to achieve this goal efficiently. Reverse pharmacognosy allows us to identify which molecule(s) from an organism is(are) responsible for the biological activity and the biological pathway(s) involved. An exciting outcome of this approach is that it not only provides evidence of the therapeutic properties of plants used in traditional medicine for instance, but may also position other plants containing the same active compounds for the same usage, thus increasing the curative arsenal e.g. development of new botanicals. This is particularly interesting in countries where western medicines are still not affordable. At the molecular level, in organisms, families of metabolites are synthesized and seldom have a single structure. Hence, when a natural compound has an interesting activity, it may be desirable to check whether there are more active and/or less toxic derivatives in organisms containing the hit - this corresponds to a kind of "natural combinatorial" chemistry. At a time when the pharmaceutical industry is lacking drug candidates in clinical trials, drug repositioning - i.e. exploiting existing knowledge for innovation - has never been so critical. Reverse pharmacognosy can contribute to addressing certain issues in current drug discovery - such as the lack of clinical candidates, toxicity... - by exploiting existing data from pharmacognosy. This review will focus on recent advances in computer science applied to natural substance research that consolidate the new concept of reverse pharmacognosy.
几十年来,化学、生物和计算技术的飞速发展为药用植物学提供了大量的数据。我们如何应对这 overwhelming 海量信息?反向药用植物学正是为此目的而提出的。它从天然分子开始,通过生物测定法在包含它们的生物体中进行,以识别活性。计算技术,特别是反向筛选,是实现这一目标的关键技术。反向药用植物学使我们能够确定生物体中哪个或哪些分子负责生物活性,以及涉及的生物途径。这种方法的一个令人兴奋的结果是,它不仅提供了药用植物治疗特性的证据,例如在传统医学中使用的植物,还可能将含有相同活性化合物的其他植物用于相同用途,从而增加治疗手段,例如开发新的植物药。在西药仍然难以负担的国家,这一点尤其有趣。在分子水平上,在生物体中,代谢物家族被合成,很少具有单一结构。因此,当一种天然化合物具有有趣的活性时,可能希望检查含有该化合物的生物体中是否存在更有效和/或毒性更低的衍生物 - 这对应于一种“天然组合”化学。在制药行业缺乏临床试验候选药物的情况下,药物再定位 - 即利用现有知识进行创新 - 从未如此重要。反向药用植物学可以通过利用药用植物学的现有数据来解决当前药物发现中的某些问题,例如缺乏临床候选药物、毒性等。本文综述将重点介绍应用于天然物质研究的计算机科学的最新进展,这些进展巩固了反向药用植物学的新概念。