Suppr超能文献

聚类生存和竞争风险数据的调整曲线。

Adjusted curves for clustered survival and competing risks data.

作者信息

Khanal Manoj, Kim Soyoung, Ahn Kwang Woo

机构信息

Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.

Abstract

Observational studies with right-censored data often have clustered data due to matched pairs or a study center effect. In such data, there may be an imbalance in patient characteristics between treatment groups, where Kaplan-Meier curves or unadjusted cumulative incidence curves can be misleading and may not represent the average patient on a given treatment arm. Adjusted curves are desirable to appropriately display survival or cumulative incidence curves in this case. We propose methods for estimating the adjusted survival and cumulative incidence probabilities for clustered right-censored data. For the competing risks outcome, we allow both covariate-independent and covariate-dependent censoring. We develop an R package to implement the proposed methods. It provides the estimates of adjusted survival and cumulative incidence probabilities along with their standard errors. Our simulation results show that the adjusted survival and cumulative incidence estimates of the proposed method are unbiased with approximate 95% coverage rates. We apply the proposed method to stem cell transplant data of leukemia patients.

摘要

带有右删失数据的观察性研究常常因配对或研究中心效应而存在聚类数据。在这类数据中,治疗组之间的患者特征可能存在不平衡,此时 Kaplan-Meier 曲线或未调整的累积发病率曲线可能会产生误导,可能无法代表给定治疗组中的平均患者情况。在这种情况下,调整后的曲线有助于恰当地展示生存曲线或累积发病率曲线。我们提出了用于估计聚类右删失数据的调整后生存概率和累积发病率概率的方法。对于竞争风险结局,我们允许协变量独立删失和协变量依赖删失。我们开发了一个 R 包来实现所提出的方法。它提供了调整后生存概率和累积发病率概率的估计值及其标准误。我们的模拟结果表明,所提出方法的调整后生存估计值和累积发病率估计值是无偏的,覆盖率约为 95%。我们将所提出的方法应用于白血病患者的干细胞移植数据。

相似文献

1
Adjusted curves for clustered survival and competing risks data.聚类生存和竞争风险数据的调整曲线。
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.
2
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.

引用本文的文献

1
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.

本文引用的文献

1
Competing risks regression for clustered data with covariate-dependent censoring.具有协变量依赖删失的聚类数据的竞争风险回归
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.
3
Missing covariates in competing risks analysis.竞争风险分析中协变量的缺失
Biostatistics. 2016 Oct;17(4):751-63. doi: 10.1093/biostatistics/kxw019. Epub 2016 May 13.
7
Competing risks regression for clustered data. 群组数据的竞争风险回归。
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
8
Competing risks regression for stratified data.分层数据的竞争风险回归
Biometrics. 2011 Jun;67(2):661-70. doi: 10.1111/j.1541-0420.2010.01493.x. Epub 2010 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验