Khanal Manoj, Kim Soyoung, Ahn Kwang Woo
Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.
Observational studies with right-censored data often have clustered data due to matched pairs or a study center effect. In such data, there may be an imbalance in patient characteristics between treatment groups, where Kaplan-Meier curves or unadjusted cumulative incidence curves can be misleading and may not represent the average patient on a given treatment arm. Adjusted curves are desirable to appropriately display survival or cumulative incidence curves in this case. We propose methods for estimating the adjusted survival and cumulative incidence probabilities for clustered right-censored data. For the competing risks outcome, we allow both covariate-independent and covariate-dependent censoring. We develop an R package to implement the proposed methods. It provides the estimates of adjusted survival and cumulative incidence probabilities along with their standard errors. Our simulation results show that the adjusted survival and cumulative incidence estimates of the proposed method are unbiased with approximate 95% coverage rates. We apply the proposed method to stem cell transplant data of leukemia patients.
带有右删失数据的观察性研究常常因配对或研究中心效应而存在聚类数据。在这类数据中,治疗组之间的患者特征可能存在不平衡,此时 Kaplan-Meier 曲线或未调整的累积发病率曲线可能会产生误导,可能无法代表给定治疗组中的平均患者情况。在这种情况下,调整后的曲线有助于恰当地展示生存曲线或累积发病率曲线。我们提出了用于估计聚类右删失数据的调整后生存概率和累积发病率概率的方法。对于竞争风险结局,我们允许协变量独立删失和协变量依赖删失。我们开发了一个 R 包来实现所提出的方法。它提供了调整后生存概率和累积发病率概率的估计值及其标准误。我们的模拟结果表明,所提出方法的调整后生存估计值和累积发病率估计值是无偏的,覆盖率约为 95%。我们将所提出的方法应用于白血病患者的干细胞移植数据。