Suppr超能文献

具有信息性簇大小的聚集多状态现状数据的伪值回归。

Pseudo-value regression of clustered multistate current status data with informative cluster sizes.

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, USA.

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.

出版信息

Stat Methods Med Res. 2023 Aug;32(8):1494-1510. doi: 10.1177/09622802231176033. Epub 2023 Jun 16.

Abstract

Multistate current status data presents a more severe form of censoring due to the single observation of study participants transitioning through a sequence of well-defined disease states at random inspection times. Moreover, these data may be clustered within specified groups, and informativeness of the cluster sizes may arise due to the existing latent relationship between the transition outcomes and the cluster sizes. Failure to adjust for this informativeness may lead to a biased inference. Motivated by a clinical study of periodontal disease, we propose an extension of the pseudo-value approach to estimate covariate effects on the state occupation probabilities for these clustered multistate current status data with informative cluster or intra-cluster group sizes. In our approach, the proposed pseudo-value technique initially computes marginal estimators of the state occupation probabilities utilizing nonparametric regression. Next, the estimating equations based on the corresponding pseudo-values are reweighted by functions of the cluster sizes to adjust for informativeness. We perform a variety of simulation studies to study the properties of our pseudo-value regression based on the nonparametric marginal estimators under different scenarios of informativeness. For illustration, the method is applied to the motivating periodontal disease dataset, which encapsulates the complex data-generation mechanism.

摘要

多状态现状数据由于研究参与者在随机检查时间通过一系列明确界定的疾病状态的单一观察而呈现出更严重的删失形式。此外,这些数据可能在特定组内聚类,并且由于转移结果和聚类大小之间存在潜在的关系,聚类大小的信息量可能会出现。如果不调整这种信息量,可能会导致有偏差的推断。受牙周病临床研究的启发,我们提出了一种扩展伪值方法,以估计这些具有信息量的聚类或聚类内组大小的聚类多状态现状数据的状态占用概率对协变量的影响。在我们的方法中,所提出的伪值技术最初利用非参数回归计算状态占用概率的边缘估计量。接下来,基于相应伪值的估计方程通过聚类大小的函数进行重新加权,以调整信息量。我们在不同信息量的情况下进行了各种模拟研究,以研究基于非参数边缘估计量的伪值回归的性质。为了说明这一点,该方法应用于激励性牙周病数据集,该数据集包含复杂的数据生成机制。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验