Suppr超能文献

具有信息性簇大小的多个结局的边缘分析。

Marginal analysis of multiple outcomes with informative cluster size.

机构信息

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

Department of Health Policy & Health Services Research, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts.

出版信息

Biometrics. 2021 Mar;77(1):271-282. doi: 10.1111/biom.13241. Epub 2020 Mar 5.

Abstract

In surveillance studies of periodontal disease, the relationship between disease and other health and socioeconomic conditions is of key interest. To determine whether a patient has periodontal disease, multiple clinical measurements (eg, clinical attachment loss, alveolar bone loss, and tooth mobility) are taken at the tooth-level. Researchers often create a composite outcome from these measurements or analyze each outcome separately. Moreover, patients have varying number of teeth, with those who are more prone to the disease having fewer teeth compared to those with good oral health. Such dependence between the outcome of interest and cluster size (number of teeth) is called informative cluster size and results obtained from fitting conventional marginal models can be biased. We propose a novel method to jointly analyze multiple correlated binary outcomes for clustered data with informative cluster size using the class of generalized estimating equations (GEE) with cluster-specific weights. We compare our proposed multivariate outcome cluster-weighted GEE results to those from the convectional GEE using the baseline data from Veterans Affairs Dental Longitudinal Study. In an extensive simulation study, we show that our proposed method yields estimates with minimal relative biases and excellent coverage probabilities.

摘要

在牙周病的监测研究中,疾病与其他健康和社会经济状况之间的关系是主要关注点。为了确定患者是否患有牙周病,需要在牙齿水平上进行多项临床测量(例如,临床附着丧失、牙槽骨丧失和牙齿松动)。研究人员通常会从这些测量值中创建一个综合结果,或者分别分析每个结果。此外,患者的牙齿数量不同,那些更容易患该病的患者的牙齿数量比口腔健康状况良好的患者少。这种感兴趣的结果与聚类大小(牙齿数量)之间的依赖性称为信息聚类大小,使用常规边缘模型拟合得到的结果可能存在偏差。我们提出了一种新的方法,使用具有聚类特定权重的广义估计方程(GEE)类,联合分析具有信息聚类大小的聚类数据的多个相关二分类结果。我们使用退伍军人事务部牙科纵向研究的基线数据,将我们提出的多变量结果聚类加权 GEE 结果与传统 GEE 的结果进行比较。在广泛的模拟研究中,我们表明我们提出的方法产生的估计值具有最小的相对偏差和极好的覆盖率概率。

相似文献

本文引用的文献

3
Metabolic Syndrome and Periodontal Disease Progression in Men.男性的代谢综合征与牙周疾病进展
J Dent Res. 2016 Jul;95(7):822-8. doi: 10.1177/0022034516641053. Epub 2016 Mar 29.
9
Association models for clustered data with binary and continuous responses.具有二元和连续响应的聚类数据的关联模型。
Biometrics. 2010 Mar;66(1):287-93. doi: 10.1111/j.1541-0420.2008.01232.x. Epub 2009 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验