Suppr超能文献

一种用于病毒衣壳动力学的多尺度模型。

A multiscale model for virus capsid dynamics.

作者信息

Chen Changjun, Saxena Rishu, Wei Guo-Wei

机构信息

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Int J Biomed Imaging. 2010;2010:308627. doi: 10.1155/2010/308627. Epub 2010 Mar 9.

Abstract

Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

摘要

病毒是能够引发流行病和大流行的感染因子。了解病毒的形成、进化、稳定性以及与宿主细胞的相互作用,对科学界和公共卫生而言至关重要。通常,与水生环境相关的病毒复合体给理论描述和预测带来了巨大挑战。在这项工作中,我们提出一种基于微分几何的多尺度范式来对复杂生物分子系统进行建模。在我们的方法中,曲面的微分几何理论和几何测度理论被用作一种自然手段,将水生环境流体力学描述的宏观连续域与生物分子原子描述的微观离散域相耦合。构建一个多尺度作用泛函作为统一框架,以推导不同尺度动力学的控制方程。我们表明,流体动力学的经典纳维 - 斯托克斯方程和分子动力学的牛顿方程可以从最小作用原理推导出来。这些方程通过连续 - 离散界面耦合,该界面的动力学由势驱动的几何流控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5719/2836135/edec85c9e74d/IJBI2010-308627.001.jpg

相似文献

1
A multiscale model for virus capsid dynamics.
Int J Biomed Imaging. 2010;2010:308627. doi: 10.1155/2010/308627. Epub 2010 Mar 9.
2
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
3
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
4
Variational multiscale models for charge transport.
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
5
A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
Comput Methods Appl Mech Eng. 2013 Jan 15;197(6-8):821-833. doi: 10.1016/j.cma.2007.09.011.
6
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Int J Numer Method Biomed Eng. 2012 Jan;28(1):25-51. doi: 10.1002/cnm.1458. Epub 2011 Aug 9.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
8
Parallel multiscale simulations of a brain aneurysm.
J Comput Phys. 2013 Jul 1;244:131-147. doi: 10.1016/j.jcp.2012.08.023.
9
A mechanically consistent unified formulation for fluid-porous-structure-contact interaction.
Comput Methods Appl Mech Eng. 2024 May 15;425. doi: 10.1016/j.cma.2024.116942. Epub 2024 Mar 26.
10
Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.
Commun Comput Phys. 2013 Jan 1;13(1):285-324. doi: 10.4208/cicp.050511.050811s. Epub 2012 Jun 12.

引用本文的文献

1
Biomolecular Topology: Modelling and Analysis.
Acta Math Sin Engl Ser. 2022;38(10):1901-1938. doi: 10.1007/s10114-022-2326-5. Epub 2022 Oct 15.
3
Biomolecular surface construction by PDE transform.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):291-316. doi: 10.1002/cnm.1469. Epub 2011 Sep 26.
4
Structural systems biology and multiscale signaling models.
Ann Biomed Eng. 2012 Nov;40(11):2295-306. doi: 10.1007/s10439-012-0576-6. Epub 2012 Apr 27.

本文引用的文献

1
Total variation wavelet-based medical image denoising.
Int J Biomed Imaging. 2006;2006:89095. doi: 10.1155/IJBI/2006/89095. Epub 2006 Aug 6.
2
Evolution-operator-based single-step method for image processing.
Int J Biomed Imaging. 2006;2006:83847. doi: 10.1155/IJBI/2006/83847. Epub 2006 Feb 2.
3
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
4
Computational approaches for automatic structural analysis of large biomolecular complexes.
IEEE/ACM Trans Comput Biol Bioinform. 2008 Oct-Dec;5(4):568-82. doi: 10.1109/TCBB.2007.70226.
5
Geometric and potential driving formation and evolution of biomolecular surfaces.
J Math Biol. 2009 Aug;59(2):193-231. doi: 10.1007/s00285-008-0226-7. Epub 2008 Oct 22.
6
Inactivation of influenza A viruses in the environment and modes of transmission: a critical review.
J Infect. 2008 Nov;57(5):361-73. doi: 10.1016/j.jinf.2008.08.013. Epub 2008 Oct 9.
7
Representation of viruses in the remediated PDB archive.
Acta Crystallogr D Biol Crystallogr. 2008 Aug;D64(Pt 8):874-82. doi: 10.1107/S0907444908017393. Epub 2008 Jul 17.
8
A context-sensitive active contour for 2D corpus callosum segmentation.
Int J Biomed Imaging. 2007;2007:24826. doi: 10.1155/2007/24826.
9
Color TV: total variation methods for restoration of vector-valued images.
IEEE Trans Image Process. 1998;7(3):304-9. doi: 10.1109/83.661180.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验