Suppr超能文献

基于微分几何的多尺度模型。

Differential geometry based multiscale models.

机构信息

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.

Abstract

Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are coupled to generalized Navier-Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation.

摘要

大型化学和生物系统,如燃料电池、离子通道、分子马达和病毒,对科学界和公共卫生都具有重要意义。通常情况下,这些复杂系统及其水生环境对理论描述、模拟和预测构成了巨大挑战。在这项工作中,我们提出了一种基于微分几何的多尺度范例,用于对复杂大分子系统进行建模,并将宏观和微观描述置于同等地位。在我们的方法中,曲面的微分几何理论和几何测度理论被用作将水生环境的宏观连续力学描述与大分子的微观离散原子描述耦合的自然手段。多尺度自由能泛函或多尺度作用泛函被构建为一个统一的框架,以推导出不同尺度和不同描述的动力学的控制方程。我们的配方考虑了两种类型的含水大分子复合物,一种是接近平衡的,另一种是远离平衡的。我们表明,可以通过最小作用原理推导出流体动力学的广义纳维-斯托克斯方程、静电相互作用的广义泊松方程或广义泊松-玻尔兹曼方程以及分子动力学的牛顿方程。这些方程通过连续-离散界面耦合,其动力学由势驱动的几何流控制。与没有基于几何流的微观-宏观界面的经典流体和静电相互作用描述进行了比较。在目前的工作中强调了力的详细平衡。我们进一步将所提出的多尺度范例扩展到电动力学、电泳、燃料电池和离子通道的微观-宏观分析。我们推导出广义泊松-纳恩斯-普朗克方程,这些方程与流体动力学的广义纳维-斯托克斯方程、分子动力学的牛顿方程以及微观-宏观界面的势和表面驱动的几何流耦合。对于化学和生物学中过大的含水大分子复合物,我们进一步开发了基于微分几何的多尺度流体-电-弹性模型,用替代的弹性公式代替昂贵的分子动力学描述。

相似文献

1
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
2
Multiscale Multiphysics and Multidomain Models I: Basic Theory.
J Theor Comput Chem. 2013 Dec;12(8). doi: 10.1142/S021963361341006X.
3
A multiscale model for virus capsid dynamics.
Int J Biomed Imaging. 2010;2010:308627. doi: 10.1155/2010/308627. Epub 2010 Mar 9.
4
Variational multiscale models for charge transport.
SIAM Rev Soc Ind Appl Math. 2012;54(4):699-754. doi: 10.1137/110845690. Epub 2012 Nov 8.
5
Poisson-Boltzmann-Nernst-Planck model.
J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.
6
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Int J Numer Method Biomed Eng. 2012 Jan;28(1):25-51. doi: 10.1002/cnm.1458. Epub 2011 Aug 9.
7
Multiscale multiphysics and multidomain models--flexibility and rigidity.
J Chem Phys. 2013 Nov 21;139(19):194109. doi: 10.1063/1.4830404.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Multiscale geometric modeling of macromolecules II: Lagrangian representation.
J Comput Chem. 2013 Sep 15;34(24):2100-20. doi: 10.1002/jcc.23364. Epub 2013 Jun 29.

引用本文的文献

1
Multiscale Differential Geometry Learning for Protein Flexibility Analysis.
J Comput Chem. 2025 Mar 15;46(7):e70073. doi: 10.1002/jcc.70073.
2
Multiscale differential geometry learning of networks with applications to single-cell RNA sequencing data.
Comput Biol Med. 2024 Mar;171:108211. doi: 10.1016/j.compbiomed.2024.108211. Epub 2024 Feb 28.
3
Calculation of electrostatic free energy for the nonlinear Poisson-Boltzmann model based on the dimensionless potential.
J Comput Phys. 2024 Jan 15;497. doi: 10.1016/j.jcp.2023.112634. Epub 2024 Nov 14.
4
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
5
Geometric algebra generation of molecular surfaces.
J R Soc Interface. 2022 Apr;19(189):20220117. doi: 10.1098/rsif.2022.0117. Epub 2022 Apr 13.
6
EVOLUTIONARY DE RHAM-HODGE METHOD.
Discrete Continuous Dyn Syst Ser B. 2021 Jul;26(7):3785-3821. doi: 10.3934/dcdsb.2020257.
7
Generative network complex (GNC) for drug discovery.
Commun Inf Syst. 2019;19(3):241-277. doi: 10.4310/cis.2019.v19.n3.a2.
9
A Computational Model of Protein Induced Membrane Morphology with Geodesic Curvature Driven Protein-Membrane Interface.
J Comput Phys. 2020 Dec 1;422. doi: 10.1016/j.jcp.2020.109755. Epub 2020 Aug 13.
10
A review of mathematical representations of biomolecular data.
Phys Chem Chem Phys. 2020 Feb 26;22(8):4343-4367. doi: 10.1039/c9cp06554g.

本文引用的文献

2
Evolution-operator-based single-step method for image processing.
Int J Biomed Imaging. 2006;2006:83847. doi: 10.1155/IJBI/2006/83847. Epub 2006 Feb 2.
3
Multiscale molecular dynamics using the matched interface and boundary method.
J Comput Phys. 2011 Jan 20;230(2):435-457. doi: 10.1016/j.jcp.2010.09.031.
4
Differential geometry based solvation model I: Eulerian formulation.
J Comput Phys. 2010 Nov 1;229(22):8231-8258. doi: 10.1016/j.jcp.2010.06.036.
5
Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.
J Comput Phys. 2010 Jun 20;229(12):4431-4460. doi: 10.1016/j.jcp.2010.02.002.
6
Discrete Surface Modelling Using Partial Differential Equations.
Comput Aided Geom Des. 2006 Feb 1;23(2):125-145. doi: 10.1016/j.cagd.2005.05.004.
7
8
Quality Meshing of Implicit Solvation Models of Biomolecular Structures.
Comput Aided Geom Des. 2006 Aug 1;23(6):510-530. doi: 10.1016/j.cagd.2006.01.008.
9
Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13317-22. doi: 10.1073/pnas.0903280106. Epub 2009 Jul 27.
10
Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor.
Biophys J. 2009 Jun 3;96(11):4502-13. doi: 10.1016/j.bpj.2009.03.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验