Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
Bioconjug Chem. 2010 Jul 21;21(7):1121-9. doi: 10.1021/bc900396u.
Nitric oxide (NO), a gaseous free radical that is biologically synthesized by nitric oxide synthases, participates in a critical fashion in the regulation of diverse physiological functions including vascular and neuronal signal transduction, host defense, and cell death regulation. This article reviews the chemical and biochemical mechanisms of protein thiol modifications caused by NO and by electrophiles derived from NO metabolism. The classical NO signaling pathway involves formation of the second messenger guanosine 3',5'-cyclic monophosphate (cGMP). Post-translational modifications of redox-sensitive protein thiols have also been shown to be important in this signaling pathway. For instance, redox-sensitive thiols are targets for NO conjugation and formation of S-nitrosothiols. Electrophiles generated by reactions of NO or reactive nitrogen oxide species and biomolecules (i.e., fatty acids) effect thiol conjugations through S-alkylation. Among this class of reactions, S-guanylation is particularly emphasized. S-Guanylation is a novel type of S-alkylation with nitrated cGMP that contributes to the cytoprotective effects of NO. Post-translational modifications of thiols affect protein structures and functions: allosteric effects may alter protein structure, modification of active centers of enzymes may suppress enzyme actions, and modifications may modulate protein-protein interactions. Better understanding of protein modification by NO-derived electrophiles and the molecular basis of NO signaling would be useful in the development of new diagnostic methods and treatment of diseases related to NO metabolism.
一氧化氮(NO)是一种生物合成的自由基气体,通过一氧化氮合酶参与多种生理功能的调节,包括血管和神经元信号转导、宿主防御和细胞死亡调节。本文综述了由 NO 和由 NO 代谢衍生的亲电子试剂引起的蛋白质巯基修饰的化学和生化机制。经典的 NO 信号通路涉及第二信使鸟苷 3',5'-环单磷酸(cGMP)的形成。氧化还原敏感蛋白巯基的翻译后修饰也被证明在该信号通路中很重要。例如,氧化还原敏感的巯基是 NO 缀合和 S-亚硝酰化硫醇形成的靶标。NO 或活性氮氧化物与生物分子(即脂肪酸)反应生成的亲电子试剂通过 S-烷基化作用形成硫醇缀合物。在这一类反应中,S-鸟氨酸化特别受到强调。S-鸟氨酸化是一种新型的 S-烷基化,具有硝化的 cGMP,有助于 NO 的细胞保护作用。巯基的翻译后修饰会影响蛋白质结构和功能:变构效应可能改变蛋白质结构,酶的活性中心的修饰可能抑制酶的作用,修饰可能调节蛋白质-蛋白质相互作用。更好地理解由 NO 衍生的亲电子试剂对蛋白质的修饰以及 NO 信号的分子基础,将有助于开发与 NO 代谢相关的疾病的新诊断方法和治疗方法。