Suppr超能文献

时空疾病监测软件综述。

Review of software for space-time disease surveillance.

机构信息

Spatial Pattern Analysis & Research Laboratory, Dept. of Geography, University of Victoria, Victoria, BC, Canada.

出版信息

Int J Health Geogr. 2010 Mar 12;9:16. doi: 10.1186/1476-072X-9-16.

Abstract

Disease surveillance makes use of information technology at almost every stage of the process, from data collection and collation, through to analysis and dissemination. Automated data collection systems enable near-real time analysis of incoming data. This context places a heavy burden on software used for space-time surveillance. In this paper, we review software programs capable of space-time disease surveillance analysis, and outline some of their salient features, shortcomings, and usability. Programs with space-time methods were selected for inclusion, limiting our review to ClusterSeer, SaTScan, GeoSurveillance and the Surveillance package for R. We structure the review around stages of analysis: preprocessing, analysis, technical issues, and output. Simulated data were used to review each of the software packages. SaTScan was found to be the best equipped package for use in an automated surveillance system. ClusterSeer is more suited to data exploration, and learning about the different methods of statistical surveillance.

摘要

疾病监测在该过程的几乎每个阶段都利用信息技术,从数据收集和整理,到分析和传播。自动化数据收集系统使对传入数据进行近乎实时的分析成为可能。这一背景对用于时空监测的软件提出了很高的要求。在本文中,我们回顾了能够进行时空疾病监测分析的软件程序,并概述了它们的一些显著特征、缺点和可用性。我们选择了具有时空方法的程序进行纳入,将我们的审查限制在 ClusterSeer、SaTScan、GeoSurveillance 和 R 中的 Surveillance 包。我们围绕分析的各个阶段来组织审查:预处理、分析、技术问题和输出。我们使用模拟数据来审查每个软件包。SaTScan 被发现是最适合用于自动化监测系统的软件包。ClusterSeer 更适合于数据探索和了解不同的统计监测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f99/2848213/cb011eec9506/1476-072X-9-16-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验