Suppr超能文献

使用隐马尔可夫模型进行疾病监测。

Disease surveillance using a hidden Markov model.

作者信息

Watkins Rochelle E, Eagleson Serryn, Veenendaal Bert, Wright Graeme, Plant Aileen J

机构信息

Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia.

出版信息

BMC Med Inform Decis Mak. 2009 Aug 10;9:39. doi: 10.1186/1472-6947-9-39.

Abstract

BACKGROUND

Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance which is suitable for use with sparse small area count data and requires little baseline data.

METHODS

A Bayesian HMM was designed to monitor routinely collected notifiable disease data that are aggregated by residential postcode. Semi-synthetic data were used to evaluate the algorithm and compare outbreak detection performance with the established Early Aberration Reporting System (EARS) algorithms and a negative binomial cusum.

RESULTS

Algorithm performance varied according to the desired false alarm rate for surveillance. At false alarm rates around 0.05, the cusum-based algorithms provided the best overall outbreak detection performance, having similar sensitivity to the HMMs and a shorter average time to detection. At false alarm rates around 0.01, the HMM algorithms provided the best overall outbreak detection performance, having higher sensitivity than the cusum-based Methods and a generally shorter time to detection for larger outbreaks. Overall, the 14-day HMM had a significantly greater area under the receiver operator characteristic curve than the EARS C3 and 7-day negative binomial cusum algorithms.

CONCLUSION

Our findings suggest that the HMM provides an effective method for the surveillance of sparse small area notifiable disease data at low false alarm rates. Further investigations are required to evaluation algorithm performance across other diseases and surveillance contexts.

摘要

背景

对疾病报告数据进行常规监测能够实现对局部疾病暴发的早期检测。尽管隐马尔可夫模型(HMM)已被公认为是对疾病监测数据进行建模的一种合适方法,但在公共卫生实践中却很少应用。我们旨在开发并评估一种简单灵活的用于疾病监测的HMM,该模型适用于稀疏的小区域计数数据且所需基线数据较少。

方法

设计了一种贝叶斯HMM,用于监测按居住邮政编码汇总的常规收集的应报告疾病数据。使用半合成数据评估该算法,并将暴发检测性能与既定的早期异常报告系统(EARS)算法和负二项累积和进行比较。

结果

算法性能根据监测所需的误报率而有所不同。在误报率约为0.05时,基于累积和的算法提供了最佳的总体暴发检测性能,其灵敏度与HMM相似,且平均检测时间更短。在误报率约为0.01时,HMM算法提供了最佳的总体暴发检测性能,其灵敏度高于基于累积和的方法,对于较大的暴发,检测时间通常更短。总体而言,14天的HMM在接收者操作特征曲线下的面积显著大于EARS C3和7天负二项累积和算法。

结论

我们的研究结果表明,HMM为以低误报率监测稀疏的小区域应报告疾病数据提供了一种有效方法。需要进一步研究以评估该算法在其他疾病和监测背景下的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b8/2735038/b76aaf71e7da/1472-6947-9-39-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验