Suppr超能文献

线粒体脂肪酸合成与呼吸作用。

Mitochondrial fatty acid synthesis and respiration.

作者信息

Hiltunen J Kalervo, Autio Kaija J, Schonauer Melissa S, Kursu V A Samuli, Dieckmann Carol L, Kastaniotis Alexander J

机构信息

Department of Biochemistry and Biocenter Oulu, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland.

出版信息

Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1195-202. doi: 10.1016/j.bbabio.2010.03.006. Epub 2010 Mar 11.

Abstract

Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.

摘要

最近的研究表明,线粒体能够以丙二酰辅酶A/酰基载体蛋白(ACP)依赖的方式合成脂肪酸。该途径类似于细菌II型脂肪酸合成(FAS),后者使用离散的、由细胞核编码的蛋白质。主要通过以酵母为模型系统获得的实验证据表明,该途径对于线粒体呼吸功能至关重要。奇怪的是,线粒体FAS的缺陷不能通过在培养基中添加脂肪酸或胞质FAS复合物的产物来弥补。酵母中线粒体FAS的缺陷导致其无法在非发酵碳源上生长、线粒体细胞色素a/a3和b的丧失、线粒体RNA加工缺陷以及细胞硫辛酸的丧失。真核生物FAS II产生辛酰-ACP,这是线粒体硫辛酸合成酶的一种底物。内源性硫辛酸合成对硫辛酸可作为外源性供应维生素的假设提出了挑战。纯化的真核生物FAS II酶在体外使用酰基链长度高达16个碳原子的底物时具有催化活性。然而,除了高等真核生物呼吸复合物I的一个组成部分3-羟基肉豆蔻酰-ACP外,线粒体FAS途径合成的长链脂肪酸的命运仍然是个谜。FAS II基因与已发表的人类疾病动物模型之间的联系支持了线粒体FAS功能障碍导致哺乳动物疾病发生的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验