Suppr超能文献

三核苷酸重复序列发夹到双链体转换的机制研究。

Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.

机构信息

Departments of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

出版信息

J Biol Chem. 2010 May 7;285(19):14648-57. doi: 10.1074/jbc.M109.061853. Epub 2010 Mar 11.

Abstract

The expansion of a trinucleotide repeat sequence, such as CAG/CTG, has been pinpointed as the molecular basis for a number of neurodegenerative disorders. It has been proposed that as part of the expansion process, these repetitive sequences adopt non-B conformations such as hairpins. However, the prevalence of these hairpins and their contributions to the DNA expansion have not been well defined. In this work, we utilized a molecular beacon strategy to examine the stability of the (CAG)(10) hairpin and also its behavior in the presence of the complementary (CTG)(10) hairpin. We find that the two hairpins represent kinetically trapped species that can coexist but irreversibly convert to duplex upon thermal induction. Furthermore, as monitored by fluorescence and optical analysis, modifications to the base composition of either the loop or stem region have a profound effect on the ability of the trinucleotide repeat hairpins to convert to duplex. Additionally, the rate of duplex formation is also reduced with these loop and stem-modified hairpins. These results demonstrate that the trinucleotide repeat hairpins can convert to duplex via two independent mechanisms as follows: the loop-loop interactions found in kissing hairpins or the stem-stem interactions of a cruciform.

摘要

三核苷酸重复序列的扩展,如 CAG/CTG,已被确定为许多神经退行性疾病的分子基础。有人提出,作为扩展过程的一部分,这些重复序列采用非 B 构象,如发夹。然而,这些发夹的普遍性及其对 DNA 扩展的贡献尚未得到很好的定义。在这项工作中,我们利用分子信标策略来研究 (CAG)(10) 发夹的稳定性,以及其在互补 (CTG)(10) 发夹存在下的行为。我们发现,这两个发夹代表动力学捕获的物种,可以共存,但在热诱导下不可逆地转化为双链。此外,正如荧光和光学分析所监测的那样,对环或茎区碱基组成的修饰对三核苷酸重复发夹转化为双链的能力有深远的影响。此外,这些环和茎修饰的发夹的双链形成速率也降低了。这些结果表明,三核苷酸重复发夹可以通过两种独立的机制转化为双链:发夹中的环-环相互作用,或十字形的茎-茎相互作用。

相似文献

1
Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
J Biol Chem. 2010 May 7;285(19):14648-57. doi: 10.1074/jbc.M109.061853. Epub 2010 Mar 11.
2
3
Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
Biochemistry. 2011 May 31;50(21):4441-50. doi: 10.1021/bi200397b. Epub 2011 May 4.
4
A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
Biochem Biophys Res Commun. 2011 Oct 7;413(4):532-6. doi: 10.1016/j.bbrc.2011.08.130. Epub 2011 Sep 6.
6
Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
Biochemistry. 2007 Sep 25;46(38):10756-66. doi: 10.1021/bi7005674. Epub 2007 Aug 25.
8
Sequence length dictates repeated CAG folding in three-way junctions.
Biochemistry. 2011 Feb 1;50(4):458-65. doi: 10.1021/bi101756e. Epub 2010 Dec 31.
9
High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
ACS Chem Neurosci. 2024 Feb 21;15(4):868-876. doi: 10.1021/acschemneuro.3c00769. Epub 2024 Feb 6.
10
Unique Length-Dependent Biophysical Properties of Repetitive DNA.
J Phys Chem B. 2016 May 12;120(18):4195-203. doi: 10.1021/acs.jpcb.6b00927. Epub 2016 May 3.

引用本文的文献

1
Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication.
J Biol Chem. 2020 Nov 6;295(45):15378-15397. doi: 10.1074/jbc.RA120.013495. Epub 2020 Sep 1.
3
Formation and processing of DNA damage substrates for the hNEIL enzymes.
Free Radic Biol Med. 2017 Jun;107:35-52. doi: 10.1016/j.freeradbiomed.2016.11.030. Epub 2016 Nov 20.
4
Unique Length-Dependent Biophysical Properties of Repetitive DNA.
J Phys Chem B. 2016 May 12;120(18):4195-203. doi: 10.1021/acs.jpcb.6b00927. Epub 2016 May 3.
7
Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis.
Cell Biosci. 2012 Feb 27;2(1):7. doi: 10.1186/2045-3701-2-7.
8
Trinucleotide repeat DNA alters structure to minimize the thermodynamic impact of 8-oxo-7,8-dihydroguanine.
Biochemistry. 2012 Jan 10;51(1):52-62. doi: 10.1021/bi201552s. Epub 2011 Dec 14.
9
Premutation huntingtin allele adopts a non-B conformation and contains a hot spot for DNA damage.
Biochem Biophys Res Commun. 2011 Dec 9;416(1-2):146-52. doi: 10.1016/j.bbrc.2011.11.013. Epub 2011 Nov 11.
10
A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
Biochem Biophys Res Commun. 2011 Oct 7;413(4):532-6. doi: 10.1016/j.bbrc.2011.08.130. Epub 2011 Sep 6.

本文引用的文献

1
Structure-dependent DNA damage and repair in a trinucleotide repeat sequence.
Biochemistry. 2009 Jul 21;48(28):6655-63. doi: 10.1021/bi9007403.
3
Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex.
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9210-5. doi: 10.1073/pnas.0712121105. Epub 2008 Jul 7.
4
Catalysis of strand annealing by replication protein A derives from its strand melting properties.
J Biol Chem. 2008 Aug 1;283(31):21758-68. doi: 10.1074/jbc.M800856200. Epub 2008 Jun 3.
5
Huntington's disease: from pathology and genetics to potential therapies.
Biochem J. 2008 Jun 1;412(2):191-209. doi: 10.1042/BJ20071619.
7
Features of trinucleotide repeat instability in vivo.
Cell Res. 2008 Jan;18(1):198-213. doi: 10.1038/cr.2008.5.
8
Investigating the mechanism of the nucleocapsid protein chaperoning of the second strand transfer during HIV-1 DNA synthesis.
J Mol Biol. 2007 Dec 7;374(4):1041-53. doi: 10.1016/j.jmb.2007.10.001. Epub 2007 Oct 5.
9
Non-B DNA conformations, mutagenesis and disease.
Trends Biochem Sci. 2007 Jun;32(6):271-8. doi: 10.1016/j.tibs.2007.04.003. Epub 2007 May 9.
10
OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells.
Nature. 2007 May 24;447(7143):447-52. doi: 10.1038/nature05778. Epub 2007 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验