Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224-6825, USA.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2010-23. doi: 10.1152/ajpheart.00783.2009. Epub 2010 Mar 12.
Classical numerical models have attributed the regulation of normal cardiac automaticity in sinoatrial node cells (SANCs) largely to G protein-coupled receptor (GPCR) modulation of sarcolemmal ion currents. More recent experimental evidence, however, has indicated that GPCR modulation of SANCs automaticity involves spontaneous, rhythmic, local Ca(2+) releases (LCRs) from the sarcoplasmic reticulum (SR). We explored the GPCR rate modulation of SANCs using a unique and novel numerical model of SANCs in which Ca(2+)-release characteristics are graded by variations in the SR Ca(2+) pumping capability, mimicking the modulation by phospholamban regulated by cAMP-mediated, PKA-activated signaling. The model faithfully predicted the entire range of physiological chronotropic modulation of SANCs by the activation of beta-adrenergic receptors or cholinergic receptors only when experimentally documented changes of sarcolemmal ion channels are combined with a simultaneous increase/decrease in SR Ca(2+) pumping capability. The novel numerical mechanism of GPCR rate modulation is based on numerous complex synergistic interactions between sarcolemmal and intracellular processes via membrane voltage and Ca(2+). Major interactions include changes of diastolic Na(+)/Ca(2+) exchanger current that couple earlier/later diastolic Ca(2+) releases (predicting the experimentally defined LCR period shift) of increased/decreased amplitude (predicting changes in LCR signal mass, i.e., the product of LCR spatial size, amplitude, and number per cycle) to the diastolic depolarization and ultimately to the spontaneous action potential firing rate. Concomitantly, larger/smaller and more/less frequent activation of L-type Ca(2+) current shifts the cellular Ca(2+) balance to support the respective Ca(2+) cycling changes. In conclusion, our model simulations corroborate recent experimental results in rabbit SANCs pointing to a new paradigm for GPCR heart rate modulation by a complex system of dynamically coupled sarcolemmal and intracellular proteins.
经典的数值模型将窦房结细胞(SANC)正常自律性的调节主要归因于 G 蛋白偶联受体(GPCR)对肌膜离子电流的调制。然而,最近的实验证据表明,GPCR 对 SANC 自律性的调制涉及肌浆网(SR)的自发性、节律性、局部 Ca(2+)释放(LCR)。我们使用一种独特的新型 SANC 数值模型探索了 GPCR 的速率调制,其中 Ca(2+)释放特性通过 SR Ca(2+)泵功能的变化进行分级,模拟由 cAMP 介导的、PKA 激活的信号转导调节的磷蛋白调节的调制。当实验记录的肌膜离子通道变化与同时增加/减少 SR Ca(2+)泵功能相结合时,该模型忠实地预测了β肾上腺素能受体或胆碱能受体激活对 SANC 整个生理变时性调节范围,仅当实验记录的肌膜离子通道变化与同时增加/减少 SR Ca(2+)泵功能相结合时。GPCR 速率调制的新型数值机制基于通过膜电压和 Ca(2+)的众多复杂协同肌膜和细胞内过程之间的相互作用。主要相互作用包括改变舒张期 Na(+)/Ca(2+)交换电流,该电流耦合增加/减少幅度的早期/晚期舒张期 Ca(2+)释放(预测实验定义的 LCR 周期移位)(预测 LCR 信号质量的变化,即 LCR 空间大小、幅度和每个周期的数量的乘积)对舒张去极化,最终对自发性动作电位发放率。同时,更大/更小、更频繁/更频繁的 L 型 Ca(2+)电流激活将细胞内 Ca(2+)平衡转移到支持各自的 Ca(2+)循环变化。总之,我们的模型模拟结果与最近在兔 SANC 中的实验结果一致,表明 GPCR 心率调制的新范例是一个由动态偶联的肌膜和细胞内蛋白组成的复杂系统。