Suppr超能文献

一种通过肌质网和细胞内蛋白的动态系统对心脏起搏细胞自律性进行自主调节的新的定量解释。

A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins.

机构信息

Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224-6825, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2010-23. doi: 10.1152/ajpheart.00783.2009. Epub 2010 Mar 12.

Abstract

Classical numerical models have attributed the regulation of normal cardiac automaticity in sinoatrial node cells (SANCs) largely to G protein-coupled receptor (GPCR) modulation of sarcolemmal ion currents. More recent experimental evidence, however, has indicated that GPCR modulation of SANCs automaticity involves spontaneous, rhythmic, local Ca(2+) releases (LCRs) from the sarcoplasmic reticulum (SR). We explored the GPCR rate modulation of SANCs using a unique and novel numerical model of SANCs in which Ca(2+)-release characteristics are graded by variations in the SR Ca(2+) pumping capability, mimicking the modulation by phospholamban regulated by cAMP-mediated, PKA-activated signaling. The model faithfully predicted the entire range of physiological chronotropic modulation of SANCs by the activation of beta-adrenergic receptors or cholinergic receptors only when experimentally documented changes of sarcolemmal ion channels are combined with a simultaneous increase/decrease in SR Ca(2+) pumping capability. The novel numerical mechanism of GPCR rate modulation is based on numerous complex synergistic interactions between sarcolemmal and intracellular processes via membrane voltage and Ca(2+). Major interactions include changes of diastolic Na(+)/Ca(2+) exchanger current that couple earlier/later diastolic Ca(2+) releases (predicting the experimentally defined LCR period shift) of increased/decreased amplitude (predicting changes in LCR signal mass, i.e., the product of LCR spatial size, amplitude, and number per cycle) to the diastolic depolarization and ultimately to the spontaneous action potential firing rate. Concomitantly, larger/smaller and more/less frequent activation of L-type Ca(2+) current shifts the cellular Ca(2+) balance to support the respective Ca(2+) cycling changes. In conclusion, our model simulations corroborate recent experimental results in rabbit SANCs pointing to a new paradigm for GPCR heart rate modulation by a complex system of dynamically coupled sarcolemmal and intracellular proteins.

摘要

经典的数值模型将窦房结细胞(SANC)正常自律性的调节主要归因于 G 蛋白偶联受体(GPCR)对肌膜离子电流的调制。然而,最近的实验证据表明,GPCR 对 SANC 自律性的调制涉及肌浆网(SR)的自发性、节律性、局部 Ca(2+)释放(LCR)。我们使用一种独特的新型 SANC 数值模型探索了 GPCR 的速率调制,其中 Ca(2+)释放特性通过 SR Ca(2+)泵功能的变化进行分级,模拟由 cAMP 介导的、PKA 激活的信号转导调节的磷蛋白调节的调制。当实验记录的肌膜离子通道变化与同时增加/减少 SR Ca(2+)泵功能相结合时,该模型忠实地预测了β肾上腺素能受体或胆碱能受体激活对 SANC 整个生理变时性调节范围,仅当实验记录的肌膜离子通道变化与同时增加/减少 SR Ca(2+)泵功能相结合时。GPCR 速率调制的新型数值机制基于通过膜电压和 Ca(2+)的众多复杂协同肌膜和细胞内过程之间的相互作用。主要相互作用包括改变舒张期 Na(+)/Ca(2+)交换电流,该电流耦合增加/减少幅度的早期/晚期舒张期 Ca(2+)释放(预测实验定义的 LCR 周期移位)(预测 LCR 信号质量的变化,即 LCR 空间大小、幅度和每个周期的数量的乘积)对舒张去极化,最终对自发性动作电位发放率。同时,更大/更小、更频繁/更频繁的 L 型 Ca(2+)电流激活将细胞内 Ca(2+)平衡转移到支持各自的 Ca(2+)循环变化。总之,我们的模型模拟结果与最近在兔 SANC 中的实验结果一致,表明 GPCR 心率调制的新范例是一个由动态偶联的肌膜和细胞内蛋白组成的复杂系统。

相似文献

1
A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2010-23. doi: 10.1152/ajpheart.00783.2009. Epub 2010 Mar 12.
3
Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh).
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H949-59. doi: 10.1152/ajpheart.01340.2008. Epub 2009 Jun 19.
4
Rhythmic Ca2+ oscillations drive sinoatrial nodal cell pacemaker function to make the heart tick.
Ann N Y Acad Sci. 2005 Jun;1047:138-56. doi: 10.1196/annals.1341.013.
6
Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.
7
Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4.
Circ Arrhythm Electrophysiol. 2018 Jun;11(6):e005896. doi: 10.1161/CIRCEP.117.005896.
8
CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases.
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H532-44. doi: 10.1152/ajpheart.00765.2015. Epub 2016 Jul 8.

引用本文的文献

1
The Impact of Potassium Dynamics on Cardiomyocyte Beating in Hemodialysis Treatment.
J Clin Med. 2024 Apr 15;13(8):2289. doi: 10.3390/jcm13082289.
2
Synergy between Membrane Currents Prevents Severe Bradycardia in Mouse Sinoatrial Node Tissue.
Int J Mol Sci. 2023 Mar 17;24(6):5786. doi: 10.3390/ijms24065786.
3
Adenosine reduces sinoatrial node cell action potential firing rate by uncoupling its membrane and calcium clocks.
Front Physiol. 2022 Nov 24;13:977807. doi: 10.3389/fphys.2022.977807. eCollection 2022.
5
Disorder in Ca2+ release unit locations confers robustness but cuts flexibility of heart pacemaking.
J Gen Physiol. 2022 Sep 5;154(9). doi: 10.1085/jgp.202113061. Epub 2022 Aug 9.
10
The Oculocardiac Reflex: A Review.
Clin Ophthalmol. 2021 Jun 24;15:2693-2725. doi: 10.2147/OPTH.S317447. eCollection 2021.

本文引用的文献

2
Beta-adrenergic signaling accelerates and synchronizes cardiac ryanodine receptor response to a single L-type Ca2+ channel.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):18028-33. doi: 10.1073/pnas.0906560106. Epub 2009 Oct 7.
3
Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells.
Basic Res Cardiol. 2010 Jan;105(1):73-87. doi: 10.1007/s00395-009-0048-9. Epub 2009 Jul 29.
4
Control of heart rate by cAMP sensitivity of HCN channels.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12189-94. doi: 10.1073/pnas.0810332106. Epub 2009 Jul 1.
5
Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh).
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H949-59. doi: 10.1152/ajpheart.01340.2008. Epub 2009 Jun 19.
6
What keeps us ticking: a funny current, a calcium clock, or both?
J Mol Cell Cardiol. 2009 Aug;47(2):157-70. doi: 10.1016/j.yjmcc.2009.03.022. Epub 2009 Apr 8.
7
Calmodulin kinase II is required for fight or flight sinoatrial node physiology.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5972-7. doi: 10.1073/pnas.0806422106. Epub 2009 Mar 10.
8
Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation.
Circulation. 2009 Feb 17;119(6):788-96. doi: 10.1161/CIRCULATIONAHA.108.817379. Epub 2009 Feb 2.
9
Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.
10
The missing link in the mystery of normal automaticity of cardiac pacemaker cells.
Ann N Y Acad Sci. 2008 Mar;1123:41-57. doi: 10.1196/annals.1420.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验