Suppr超能文献

细胞内 Ca2+ 时钟和细胞膜电压时钟的耦合系统控制着心脏起搏器的计时机制。

A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker.

机构信息

Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging/NIH, 5600 Nathan Shock Dr., Baltimore, MD 21224-6825, USA.

出版信息

Circ Res. 2010 Mar 5;106(4):659-73. doi: 10.1161/CIRCRESAHA.109.206078.

Abstract

Ion channels on the surface membrane of sinoatrial nodal pacemaker cells (SANCs) are the proximal cause of an action potential. Each individual channel type has been thoroughly characterized under voltage clamp, and the ensemble of the ion channel currents reconstructed in silico generates rhythmic action potentials. Thus, this ensemble can be envisioned as a surface "membrane clock" (M clock). Localized subsarcolemmal Ca(2+) releases are generated by the sarcoplasmic reticulum via ryanodine receptors during late diastolic depolarization and are referred to as an intracellular "Ca(2+) clock," because their spontaneous occurrence is periodic during voltage clamp or in detergent-permeabilized SANCs, and in silico as well. In spontaneously firing SANCs, the M and Ca(2+) clocks do not operate in isolation but work together via numerous interactions modulated by membrane voltage, subsarcolemmal Ca(2+), and protein kinase A and CaMKII-dependent protein phosphorylation. Through these interactions, the 2 subsystem clocks become mutually entrained to form a robust, stable, coupled-clock system that drives normal cardiac pacemaker cell automaticity. G protein-coupled receptors signaling creates pacemaker flexibility, ie, effects changes in the rhythmic action potential firing rate, by impacting on these very same factors that regulate robust basal coupled-clock system function. This review examines evidence that forms the basis of this coupled-clock system concept in cardiac SANCs.

摘要

窦房结起搏细胞(SANCs)表面膜上的离子通道是动作电位的近端原因。每种单独的通道类型都在电压钳制下得到了彻底的描述,而离子通道电流的整体在计算机中重建生成有节奏的动作电位。因此,这个整体可以被想象成一个表面的“膜钟”(M 钟)。在晚期去极化期间,肌浆网通过兰尼碱受体产生局部的肌下 Ca(2+)释放,被称为细胞内“Ca(2+)钟”,因为在电压钳制或去污剂通透的 SANCs 中,以及在计算机模拟中,它们的自发发生是周期性的。在自发放电的 SANCs 中,M 钟和 Ca(2+)钟不是孤立地工作,而是通过许多受膜电压、肌下 Ca(2+)、蛋白激酶 A 和 CaMKII 依赖性蛋白磷酸化调节的相互作用共同工作。通过这些相互作用,这 2 个子系统时钟相互同步,形成一个强大、稳定、耦合时钟系统,驱动正常的心脏起搏细胞自律性。G 蛋白偶联受体信号通过影响调节强大的基础耦合时钟系统功能的相同因素,产生起搏灵活性,即改变有节奏的动作电位发放率。本综述检查了构成心脏 SANCs 中这个耦合时钟系统概念基础的证据。

相似文献

2
A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells.
Sci Signal. 2018 Jun 12;11(534):eaap7608. doi: 10.1126/scisignal.aap7608.
3
Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.
6
Electrochemical Na+ and Ca2+ gradients drive coupled-clock regulation of automaticity of isolated rabbit sinoatrial nodal pacemaker cells.
Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H251-67. doi: 10.1152/ajpheart.00667.2015. Epub 2016 May 20.
8
Normal heart rhythm is initiated and regulated by an intracellular calcium clock within pacemaker cells.
Heart Lung Circ. 2007 Oct;16(5):335-48. doi: 10.1016/j.hlc.2007.07.005. Epub 2007 Sep 10.

引用本文的文献

1
Cardiogenic and chronobiological mechanisms in seizure-induced sinus arrhythmias.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013318. doi: 10.1371/journal.pcbi.1013318. eCollection 2025 Jul.
2
Aging and sinus node dysfunction: mechanisms and future directions.
Clin Sci (Lond). 2025 Jun 11;139(11):577-93. doi: 10.1042/CS20231025.
3
Sudden cardiac death in congenital heart disease-a narrative review and update.
Front Cardiovasc Med. 2025 Apr 30;12:1539958. doi: 10.3389/fcvm.2025.1539958. eCollection 2025.
4
Heart Rhythm Harmony Becomes Discordant as We Age.
Heart Lung Circ. 2025 Jun;34(6):543-555. doi: 10.1016/j.hlc.2025.04.084. Epub 2025 May 11.
5
A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers.
Trends Biochem Sci. 2025 Apr;50(4):344-355. doi: 10.1016/j.tibs.2025.01.006. Epub 2025 Feb 13.
6
Voltage-Gated Calcium Channels and the Parity-Dependent Differential Uterine Response to Oxytocin in Rats.
Reprod Sci. 2025 Feb;32(2):300-315. doi: 10.1007/s43032-024-01765-8. Epub 2025 Jan 13.
7
The mechano-electric feedback mediates the dual effect of stretch in mouse sinoatrial tissue.
J Mol Cell Cardiol Plus. 2023 Aug 14;5:100042. doi: 10.1016/j.jmccpl.2023.100042. eCollection 2023 Sep.

本文引用的文献

1
Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells.
Basic Res Cardiol. 2010 Jan;105(1):73-87. doi: 10.1007/s00395-009-0048-9. Epub 2009 Jul 29.
2
Local control of Ca2+-induced Ca2+ release in mouse sinoatrial node cells.
J Mol Cell Cardiol. 2009 Nov;47(5):706-15. doi: 10.1016/j.yjmcc.2009.07.007. Epub 2009 Jul 15.
3
The cardiac pacemaker current.
J Mol Cell Cardiol. 2010 Jan;48(1):55-64. doi: 10.1016/j.yjmcc.2009.06.019. Epub 2009 Jul 8.
5
Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh).
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H949-59. doi: 10.1152/ajpheart.01340.2008. Epub 2009 Jun 19.
6
What keeps us ticking: a funny current, a calcium clock, or both?
J Mol Cell Cardiol. 2009 Aug;47(2):157-70. doi: 10.1016/j.yjmcc.2009.03.022. Epub 2009 Apr 8.
7
Calmodulin kinase II is required for fight or flight sinoatrial node physiology.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5972-7. doi: 10.1073/pnas.0806422106. Epub 2009 Mar 10.
8
Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation.
Circulation. 2009 Feb 17;119(6):788-96. doi: 10.1161/CIRCULATIONAHA.108.817379. Epub 2009 Feb 2.
9
Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.
10
Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15617-22. doi: 10.1073/pnas.0805500105. Epub 2008 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验