Structure et Dynamique des Macromolecules, UMR-CNRS 6026, Université de Rennes 1, 35042 Rennes Cedex France.
Equipe Ecophysiologie des Invertébrés Marins des Milieux Extrêmes, Université Pierre et Marie Curie Paris VI, CNRS UMR 7144, Station Biologique de Roscoff, B.P. 74, 29682 Roscoff, France.
J Biol Chem. 2010 May 14;285(20):15100-15110. doi: 10.1074/jbc.M109.094698. Epub 2010 Mar 14.
The 90-kDa heat shock protein (Hsp90) is involved in the regulation and activation of numerous client proteins essential for diverse functions such as cell growth and differentiation. Although the function of cytosolic Hsp90 is dependent on a battery of cochaperone proteins regulating both its ATPase activity and its interaction with client proteins, little is known about the real Hsp90 molecular mechanism. Besides its highly flexible dimeric state, Hsp90 is able to self-oligomerize in the presence of divalent cations or under heat shock. In addition to dimers, oligomers exhibit a chaperone activity. In this work, we focused on Mg(2+)-induced oligomers that we named Type I, Type II, and Type III in increasing molecular mass order. After stabilization of these quaternary structures, we optimized a purification protocol. Combining analytical ultracentrifugation, size exclusion chromatography coupled to multiangle laser light scattering, and high mass matrix-assisted laser desorption/ionization time of flight mass spectrometry, we determined biochemical and biophysical characteristics of each Hsp90 oligomer. We demonstrate that Type I oligomer is a tetramer, and Type II is an hexamer, whereas Type III is a dodecamer. These even-numbered structures demonstrate that the building brick for oligomerization is the dimer up to the Type II, whereas Type III probably results from the association of two Type II. Moreover, the Type II oligomer structure, studied by negative stain transmission electron microscopy tomography, exhibits a "nest-like" shape that forms a "cozy chaperoning chamber" where the client protein folding/protection could occur.
90kDa 热休克蛋白(Hsp90)参与调节和激活许多对细胞生长和分化等多种功能至关重要的客户蛋白。尽管细胞质 Hsp90 的功能依赖于一系列调节其 ATP 酶活性及其与客户蛋白相互作用的共伴侣蛋白,但对真正的 Hsp90 分子机制知之甚少。除了高度灵活的二聚态外,Hsp90 在二价阳离子存在或热休克下能够自我寡聚化。除二聚体外,寡聚体还表现出伴侣活性。在这项工作中,我们专注于镁(Mg2+)诱导的寡聚体,我们将其命名为 I 型、II 型和 III 型,按分子量增加的顺序排列。在这些四级结构稳定后,我们优化了纯化方案。结合分析超速离心、与多角度激光散射耦合的分子筛色谱以及高质量基质辅助激光解吸/电离飞行时间质谱,我们确定了每种 Hsp90 寡聚体的生化和生物物理特性。我们证明 I 型寡聚体是四聚体,II 型是六聚体,而 III 型是十二聚体。这些偶数结构表明寡聚化的构建块是二聚体,直到 II 型,而 III 型可能是由两个 II 型的缔合形成的。此外,通过负染色透射电子显微镜断层扫描研究的 II 型寡聚体结构表现出“巢状”形状,形成一个“舒适的伴侣腔”,其中客户蛋白折叠/保护可能发生。