Département de Biologie Cellulaire, Université de Genève, Sciences III, 30, quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
Urologic Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA.
BMC Biol. 2020 Jan 27;18(1):10. doi: 10.1186/s12915-020-0740-7.
The molecular chaperone TRAP1, the mitochondrial isoform of cytosolic HSP90, remains poorly understood with respect to its pivotal role in the regulation of mitochondrial metabolism. Most studies have found it to be an inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) and an inducer of the Warburg phenotype of cancer cells. However, others have reported the opposite, and there is no consensus on the relevant TRAP1 interactors. This calls for a more comprehensive analysis of the TRAP1 interactome and of how TRAP1 and mitochondrial metabolism mutually affect each other.
We show that the disruption of the gene for TRAP1 in a panel of cell lines dysregulates OXPHOS by a metabolic rewiring that induces the anaplerotic utilization of glutamine metabolism to replenish TCA cycle intermediates. Restoration of wild-type levels of OXPHOS requires full-length TRAP1. Whereas the TRAP1 ATPase activity is dispensable for this function, it modulates the interactions of TRAP1 with various mitochondrial proteins. Quantitatively by far, the major interactors of TRAP1 are the mitochondrial chaperones mtHSP70 and HSP60. However, we find that the most stable stoichiometric TRAP1 complex is a TRAP1 tetramer, whose levels change in response to both a decline and an increase in OXPHOS.
Our work provides a roadmap for further investigations of how TRAP1 and its interactors such as the ATP synthase regulate cellular energy metabolism. Our results highlight that TRAP1 function in metabolism and cancer cannot be understood without a focus on TRAP1 tetramers as potentially the most relevant functional entity.
分子伴侣 TRAP1 是胞质 HSP90 的线粒体同工型,其在调节线粒体代谢中的关键作用仍知之甚少。大多数研究发现它是线粒体氧化磷酸化(OXPHOS)的抑制剂和癌细胞Warburg 表型的诱导剂。然而,其他人则报告了相反的结果,而且对于相关的 TRAP1 相互作用蛋白也没有共识。这就需要对 TRAP1 相互作用组进行更全面的分析,以及对 TRAP1 和线粒体代谢如何相互影响进行分析。
我们表明,在一系列细胞系中破坏 TRAP1 基因会通过代谢重布线扰乱 OXPHOS,从而诱导谷氨酰胺代谢的生酮作用来补充 TCA 循环中间产物。恢复野生型水平的 OXPHOS 需要全长的 TRAP1。虽然 TRAP1 的 ATP 酶活性对于此功能不是必需的,但它可以调节 TRAP1 与各种线粒体蛋白的相互作用。到目前为止,TRAP1 的主要相互作用蛋白是线粒体伴侣 mtHSP70 和 HSP60。然而,我们发现 TRAP1 最稳定的计量比复合物是 TRAP1 四聚体,其水平会响应 OXPHOS 的下降和增加而变化。
我们的工作为进一步研究 TRAP1 及其相互作用蛋白(如 ATP 合酶)如何调节细胞能量代谢提供了路线图。我们的结果强调,没有关注可能是最相关的功能实体的 TRAP1 四聚体,就无法理解 TRAP1 在代谢和癌症中的功能。