Psychology Department, Arizona State University, Tempe, AZ 85287-1104, USA.
Psychol Methods. 2010 Mar;15(1):18-37. doi: 10.1037/a0015917.
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on the identification of threats to validity and the inclusion of design features that may prevent those threats from occurring or render them implausible. Rubin's approach focuses on the precise specification of both the possible outcomes for each participant and assumptions that are mathematically sufficient to estimate the causal effect. In this article, the authors compare the perspectives provided by the 2 approaches on randomized experiments, broken randomized experiments in which treatment nonadherence or attrition occurs, and observational studies in which participants are assigned to treatments on an unknown basis. The authors highlight dimensions on which the 2 approaches have different emphases, including the roles of constructs versus operations, threats to validity versus assumptions, methods of addressing threats to internal validity and violations of assumptions, direction versus magnitude of causal effects, role of measurement, and causal generalization. The authors conclude that investigators can benefit from drawing on the strengths of both approaches in designing research.
唐纳德·坎贝尔的因果推理方法(D. T. 坎贝尔,1957 年;W. R. 沙迪什、T. D. 库克和 D. T. 坎贝尔,2002 年)在心理学和教育学中得到广泛应用,而唐纳德·鲁宾的因果模型(P. W. 霍兰德,1986 年;D. B. 鲁宾,1974 年,2005 年)在经济学、统计学、医学和公共卫生领域得到广泛应用。坎贝尔的方法侧重于识别有效性威胁,并纳入可能防止这些威胁发生或使它们变得不可信的设计特征。鲁宾的方法侧重于为每个参与者的可能结果和数学上足以估计因果效应的假设进行精确说明。在本文中,作者比较了这两种方法对随机实验、随机实验中治疗不依从或流失以及观察性研究的观点,在这些研究中,参与者是基于未知的基础被分配到治疗中。作者强调了这两种方法在不同重点上的维度,包括结构与操作的作用、有效性威胁与假设的作用、处理内部有效性威胁和违反假设的方法、因果效应的方向与大小、测量的作用以及因果推广。作者得出结论,研究人员可以从设计研究中借鉴这两种方法的优势中受益。