Suppr超能文献

坎贝尔和鲁宾:在实地环境中进行因果推理的方法介绍与比较。

Campbell and Rubin: A primer and comparison of their approaches to causal inference in field settings.

机构信息

University of California, Merced, CA 95344, USA.

出版信息

Psychol Methods. 2010 Mar;15(1):3-17. doi: 10.1037/a0015916.

Abstract

This article compares Donald Campbell's and Donald Rubin's work on causal inference in field settings on issues of epistemology, theories of cause and effect, methodology, statistics, generalization, and terminology. The two approaches are quite different but compatible, differing mostly in matters of bandwidth versus fidelity. Campbell's work demonstrates broad narrative scope that covers a wide array of concepts related to causation, with a powerful appreciation for human fallibility in making causal judgments, with a more elaborate theory of cause and generalization, and with a preference for design over analysis. Rubin's approach is a more narrow and formal quantitative analysis of effect estimation, sharing a preference for design but best known for analysis, with compelling quantitative approaches to obtaining unbiased quantitative effect estimates from nonrandomized designs and with comparatively little to say about generalization. Much could be gained by joining the emphasis on design in Campbell with the emphasis on analysis in Rubin. However, the 2 approaches also speak modestly different languages that leave some questions about their total commensurability that only continued dialogue can fully clarify.

摘要

本文比较了唐纳德·坎贝尔(Donald Campbell)和唐纳德·鲁宾(Donald Rubin)在实地环境中关于因果推断的工作,涉及认识论、因果理论、方法论、统计学、概括和术语等问题。这两种方法有很大的不同,但可以兼容,主要区别在于带宽与保真度。坎贝尔的工作展示了广泛的叙事范围,涵盖了与因果关系相关的一系列广泛概念,对人类在做出因果判断时的易错性有深刻的认识,具有更精细的因果和概括理论,并倾向于设计而不是分析。鲁宾的方法是对效应估计的更狭隘和正式的定量分析,与设计偏好相同,但以分析而闻名,具有引人注目的定量方法,可以从非随机设计中获得无偏的定量效应估计,并且对概括的论述相对较少。如果将坎贝尔强调设计的重点与鲁宾强调分析的重点结合起来,可能会有很多收获。然而,这两种方法也使用了略有不同的语言,这使得它们的完全可通约性存在一些问题,只有持续的对话才能完全澄清。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验