Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK.
Neuroimage. 2010 Jul 15;51(4):1345-59. doi: 10.1016/j.neuroimage.2010.03.018. Epub 2010 Mar 15.
Volume and change in volume of the hippocampus are both important markers of Alzheimer's disease (AD). Delineation of the structure on MRI is time-consuming and therefore reliable automated methods are required. We describe an improvement (multiple-atlas propagation and segmentation (MAPS)) to our template library-based segmentation technique. The improved technique uses non-linear registration of the best-matched templates from our manually segmented library to generate multiple segmentations and combines them using the simultaneous truth and performance level estimation (STAPLE) algorithm. Change in volume over 12months (MAPS-HBSI) was measured by applying the boundary shift integral using MAPS regions. Methods were developed and validated against manual measures using subsets from Alzheimer's Disease Neuroimaging Initiative (ADNI). The best method was applied to 682 ADNI subjects, at baseline and 12-month follow-up, enabling assessment of volumes and atrophy rates in control, mild cognitive impairment (MCI) and AD groups, and within MCI subgroups classified by subsequent clinical outcome. We compared our measures with those generated by Surgical Navigation Technologies (SNT) available from ADNI. The accuracy of our volumes was one of the highest reported (mean(SD) Jaccard Index 0.80(0.04) (N=30)). Both MAPS baseline volume and MAPS-HBSI atrophy rate distinguished between control, MCI and AD groups. Comparing MCI subgroups (reverters, stable and converters): volumes were lower and rates higher in converters compared with stable and reverter groups (p< or =0.03). MAPS-HBSI required the lowest sample sizes (78 subjects) for a hypothetical trial. In conclusion, the MAPS and MAPS-HBSI methods give accurate and reliable volumes and atrophy rates across the clinical spectrum from healthy aging to AD.
海马体的体积和体积变化都是阿尔茨海默病(AD)的重要标志物。在 MRI 上描绘结构既耗时又费力,因此需要可靠的自动化方法。我们描述了一种改进(多图谱传播和分割(MAPS)),用于我们基于模板库的分割技术。改进后的技术使用从我们手动分割的库中最佳匹配模板的非线性注册来生成多个分割,并使用同时真实和性能水平估计(STAPLE)算法对它们进行组合。通过使用 MAPS 区域应用边界位移积分来测量 12 个月的体积变化(MAPS-HBSI)。使用 ADNI 的子集开发并验证了针对手动测量的方法。将最佳方法应用于 682 名 ADNI 受试者的基线和 12 个月随访,从而能够评估对照组、轻度认知障碍(MCI)和 AD 组的体积和萎缩率,以及根据随后的临床结果分类的 MCI 亚组内的体积和萎缩率。我们将我们的测量结果与 ADNI 中 Surgical Navigation Technologies(SNT)生成的测量结果进行了比较。我们的体积精度是报告中最高的之一(平均(SD)Jaccard Index 0.80(0.04)(N=30))。MAPS 基线体积和 MAPS-HBSI 萎缩率可区分对照组、MCI 和 AD 组。比较 MCI 亚组(逆转者、稳定者和转换者):与稳定组和逆转组相比,转换者的体积较低,速度较快(p<或=0.03)。对于假设性试验,MAPS-HBSI 需要的样本量最小(78 名受试者)。总之,MAPS 和 MAPS-HBSI 方法在从健康衰老到 AD 的整个临床范围内提供了准确可靠的体积和萎缩率。