Suppr超能文献

LEAP:图谱传播的嵌入学习。

LEAP: learning embeddings for atlas propagation.

机构信息

Visual Information Processing Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK.

出版信息

Neuroimage. 2010 Jan 15;49(2):1316-25. doi: 10.1016/j.neuroimage.2009.09.069. Epub 2009 Oct 6.

Abstract

We propose a novel framework for the automatic propagation of a set of manually labeled brain atlases to a diverse set of images of a population of subjects. A manifold is learned from a coordinate system embedding that allows the identification of neighborhoods which contain images that are similar based on a chosen criterion. Within the new coordinate system, the initial set of atlases is propagated to all images through a succession of multi-atlas segmentation steps. This breaks the problem of registering images that are very "dissimilar" down into a problem of registering a series of images that are "similar". At the same time, it allows the potentially large deformation between the images to be modeled as a sequence of several smaller deformations. We applied the proposed method to an exemplar region centered around the hippocampus from a set of 30 atlases based on images from young healthy subjects and a dataset of 796 images from elderly dementia patients and age-matched controls enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). We demonstrate an increasing gain in accuracy of the new method, compared to standard multi-atlas segmentation, with increasing distance between the target image and the initial set of atlases in the coordinate embedding, i.e., with a greater difference between atlas and image. For the segmentation of the hippocampus on 182 images for which a manual segmentation is available, we achieved an average overlap (Dice coefficient) of 0.85 with the manual reference.

摘要

我们提出了一种新的框架,用于自动传播一组手动标记的大脑图谱到一组不同的受试者的图像。从坐标嵌入中学习流形,允许根据选择的标准识别包含相似图像的邻域。在新的坐标系中,通过一系列多图谱分割步骤将初始图谱集传播到所有图像。这将注册非常“不同”的图像的问题分解为注册一系列“相似”图像的问题。同时,它允许将图像之间潜在的大变形建模为几个较小变形的序列。我们将提出的方法应用于一组 30 个图谱的示例区域,该图谱基于年轻健康受试者的图像和来自阿尔茨海默病神经影像学倡议(ADNI)的 796 个老年痴呆症患者和年龄匹配对照组的图像,该图谱以海马体为中心。我们展示了新方法的准确性随着目标图像与坐标嵌入中初始图谱集之间距离的增加而增加,即图谱与图像之间的差异越大,准确性提高越大。对于可用手动分割的 182 张图像的海马体分割,我们达到了与手动参考的平均重叠(Dice 系数)为 0.85。

相似文献

1
LEAP: learning embeddings for atlas propagation.
Neuroimage. 2010 Jan 15;49(2):1316-25. doi: 10.1016/j.neuroimage.2009.09.069. Epub 2009 Oct 6.
2
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
3
Using manifold learning for atlas selection in multi-atlas segmentation.
PLoS One. 2013 Aug 2;8(8):e70059. doi: 10.1371/journal.pone.0070059. Print 2013.
5
Metric Learning for Multi-atlas based Segmentation of Hippocampus.
Neuroinformatics. 2017 Jan;15(1):41-50. doi: 10.1007/s12021-016-9312-y.
6
A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
Neuroimage. 2013 Aug 15;77:26-43. doi: 10.1016/j.neuroimage.2013.03.029. Epub 2013 Mar 26.
8
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
10
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.

引用本文的文献

2
3
Amyloid-PET imaging predicts functional decline in clinically normal individuals.
Alzheimers Res Ther. 2024 Jun 17;16(1):130. doi: 10.1186/s13195-024-01494-9.
4
Continuous β-Amyloid CSF/PET Imbalance Model to Capture Alzheimer Disease Heterogeneity.
Neurology. 2024 Jul 9;103(1):e209419. doi: 10.1212/WNL.0000000000209419. Epub 2024 Jun 11.
6
Genetic, vascular and amyloid components of cerebral blood flow in a preclinical population.
J Cereb Blood Flow Metab. 2023 Oct;43(10):1726-1736. doi: 10.1177/0271678X231178993. Epub 2023 May 26.
7
The amyloid imaging for the prevention of Alzheimer's disease consortium: A European collaboration with global impact.
Front Neurol. 2023 Jan 20;13:1063598. doi: 10.3389/fneur.2022.1063598. eCollection 2022.
8
Age differences in the association between sleep and Alzheimer's disease biomarkers in the EPAD cohort.
Alzheimers Dement (Amst). 2022 Nov 25;14(1):e12380. doi: 10.1002/dad2.12380. eCollection 2022.
10
Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial.
Nat Med. 2022 Oct;28(10):2183-2193. doi: 10.1038/s41591-022-01919-8. Epub 2022 Aug 8.

本文引用的文献

1
Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus.
Med Image Anal. 2010 Feb;14(1):39-49. doi: 10.1016/j.media.2009.10.001. Epub 2009 Oct 13.
2
RABBIT: rapid alignment of brains by building intermediate templates.
Neuroimage. 2009 Oct 1;47(4):1277-87. doi: 10.1016/j.neuroimage.2009.02.043. Epub 2009 Mar 10.
3
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy.
Neuroimage. 2009 Jul 1;46(3):726-38. doi: 10.1016/j.neuroimage.2009.02.018. Epub 2009 Feb 23.
4
Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation.
Neuroimage. 2009 Jul 1;46(3):749-61. doi: 10.1016/j.neuroimage.2009.02.013. Epub 2009 Feb 21.
5
Discovering modes of an image population through mixture modeling.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):381-9. doi: 10.1007/978-3-540-85990-1_46.
6
Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979 Mar;86(2):420-8. doi: 10.1037//0033-2909.86.2.420.
7
Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts.
Neuroimage. 2008 Dec;43(4):708-20. doi: 10.1016/j.neuroimage.2008.07.058. Epub 2008 Aug 12.
9
Automatic volumetry on MR brain images can support diagnostic decision making.
BMC Med Imaging. 2008 May 23;8:9. doi: 10.1186/1471-2342-8-9.
10
The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods.
J Magn Reson Imaging. 2008 Apr;27(4):685-91. doi: 10.1002/jmri.21049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验