Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Cancer Center, Johns Hopkins University, 1550 Orleans St., CRB II, Room 405, Baltimore, MD 21231, USA.
Mol Cell Biol. 2010 May;30(10):2341-52. doi: 10.1128/MCB.00091-10. Epub 2010 Mar 15.
Combined deficiencies of poly(ADP)ribosyl polymerase 1 (PARP1) and ataxia telangiectasia mutated (ATM) result in synthetic lethality and, in the mouse, early embryonic death. Here, we investigated the genetic requirements for this lethality via analysis of mice deficient for PARP1 and either of two ATM-regulated DNA damage response (DDR) factors: histone H2AX and 53BP1. We found that, like ATM, H2AX is essential for viability in a PARP1-deficient background. In contrast, deficiency for 53BP1 modestly exacerbates phenotypes of growth retardation, genomic instability, and organismal radiosensitivity observed in PARP1-deficient mice. To gain mechanistic insights into these different phenotypes, we examined roles for 53BP1 in the repair of replication-associated double-strand breaks (DSBs) in several cellular contexts. We show that 53BP1 is required for DNA-PKcs-dependent repair of hydroxyurea (HU)-induced DSBs but dispensable for RPA/RAD51-dependent DSB repair in the same setting. Moreover, repair of mitomycin C (MMC)-induced DSBs and sister chromatid exchanges (SCEs), two RAD51-dependent processes, are 53BP1 independent. Overall, our findings define 53BP1 as a main facilitator of nonhomologous end joining (NHEJ) during the S phase of the cell cycle, beyond highly specialized lymphocyte rearrangements. These findings have important implications for our understanding of the mechanisms whereby ATM-regulated DDR prevents human aging and cancer.
聚 ADP 核糖聚合酶 1(PARP1)和共济失调毛细血管扩张突变(ATM)的联合缺陷导致合成致死,在小鼠中导致早期胚胎死亡。在这里,我们通过分析 PARP1 缺陷型和 ATM 调节的两种 DNA 损伤反应(DDR)因子(组蛋白 H2AX 和 53BP1)缺陷型的小鼠,研究了这种致死性的遗传要求。我们发现,与 ATM 一样,H2AX 在 PARP1 缺陷型背景中对生存是必需的。相比之下,53BP1 的缺乏仅适度加剧了 PARP1 缺陷型小鼠中观察到的生长迟缓、基因组不稳定性和机体放射敏感性的表型。为了深入了解这些不同的表型,我们在几种细胞环境中研究了 53BP1 在复制相关双链断裂(DSB)修复中的作用。我们表明,53BP1 是 DNA-PKcs 依赖性修复羟基脲(HU)诱导的 DSB 所必需的,但在相同条件下,对于 RPA/RAD51 依赖性 DSB 修复则是可有可无的。此外,丝裂霉素 C(MMC)诱导的 DSB 和姐妹染色单体交换(SCE)的修复,这两个 RAD51 依赖性过程,与 53BP1 无关。总体而言,我们的研究结果将 53BP1 定义为细胞周期 S 期非同源末端连接(NHEJ)的主要促进因子,超越了高度专业化的淋巴细胞重排。这些发现对我们理解 ATM 调节的 DDR 防止人类衰老和癌症的机制具有重要意义。