Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada.
PLoS Biol. 2010 Mar 9;8(3):e1000329. doi: 10.1371/journal.pbio.1000329.
Gene expression variation between species is a major contributor to phenotypic diversity, yet the underlying flexibility of transcriptional regulatory networks remains largely unexplored. Transcription of the ribosomal regulon is a critical task for all cells; in S. cerevisiae the transcription factors Rap1, Fhl1, Ifh1, and Hmo1 form a multi-subunit complex that controls ribosomal gene expression, while in C. albicans this regulation is under the control of Tbf1 and Cbf1. Here, we analyzed, using full-genome transcription factor mapping, the roles, in both S. cerevisiae and C. albicans, of each orthologous component of this complete set of regulators. We observe dramatic changes in the binding profiles of the generalist regulators Cbf1, Hmo1, Rap1, and Tbf1, while the Fhl1-Ifh1 dimer is the only component involved in ribosomal regulation in both fungi: it activates ribosomal protein genes and rDNA expression in a Tbf1-dependent manner in C. albicans and a Rap1-dependent manner in S. cerevisiae. We show that the transcriptional regulatory network governing the ribosomal expression program of two related yeast species has been massively reshaped in cis and trans. Changes occurred in transcription factor wiring with cellular functions, movements in transcription factor hierarchies, DNA-binding specificity, and regulatory complexes assembly to promote global changes in the architecture of the fungal transcriptional regulatory network.
物种间的基因表达变化是表型多样性的主要贡献者,但转录调控网络的潜在灵活性在很大程度上仍未得到探索。核糖体调控子的转录是所有细胞的关键任务;在酿酒酵母中,转录因子 Rap1、Fhl1、Ifh1 和 Hmo1 形成一个多亚基复合物,控制核糖体基因的表达,而在白色念珠菌中,这种调节受 Tbf1 和 Cbf1 的控制。在这里,我们使用全基因组转录因子图谱分析了这一组完整调控因子的每个同源物在酿酒酵母和白色念珠菌中的作用。我们观察到通用调节因子 Cbf1、Hmo1、Rap1 和 Tbf1 的结合谱发生了剧烈变化,而 Fhl1-Ifh1 二聚体是这两种真菌中参与核糖体调节的唯一成分:它以 Tbf1 依赖的方式激活白色念珠菌中的核糖体蛋白基因和 rDNA 表达,以 Rap1 依赖的方式激活酿酒酵母中的核糖体蛋白基因和 rDNA 表达。我们表明,两个相关酵母物种的核糖体表达程序的转录调控网络已经在顺式和反式中被大规模重塑。转录因子布线与细胞功能、转录因子层次结构中的移动、DNA 结合特异性和调节复合物组装发生了变化,以促进真菌转录调控网络架构的全局变化。