Suppr超能文献

基于快速自适应 B 样条蛇算法的心内膜边界提取在左心室超声心动图图像中的应用。

Endocardial boundary extraction in left ventricular echocardiographic images using fast and adaptive B-spline snake algorithm.

机构信息

KN Toosi University of Technology, Tehran, Iran.

出版信息

Int J Comput Assist Radiol Surg. 2010 Sep;5(5):501-13. doi: 10.1007/s11548-010-0404-0. Epub 2010 Mar 16.

Abstract

PURPOSE

A fast and robust algorithm was developed for automatic segmentation of the left ventricular endocardial boundary in echocardiographic images. The method was applied to calculate left ventricular volume and ejection fraction estimation.

METHODS

A fast adaptive B-spline snake algorithm that resolves the computational concerns of conventional active contours and avoids computationally expensive optimizations was developed. A combination of external forces, adaptive node insertion, and multiresolution strategy was incorporated in the proposed algorithm. Boundary extraction with area and volume estimation in left ventricular echocardiographic images was implemented using the B-spline snake algorithm. The method was implemented in MATLAB and 50 medical images were used to evaluate the algorithm performance. Experimental validation was done using a database of echocardiographic images that had been manually evaluated by experts.

RESULTS

Comparison of methods demonstrates significant improvement over conventional algorithms using the adaptive B-spline technique. Moreover, our method reached a reasonable agreement with the results obtained manually by experts. The accuracy of boundary detection was calculated with Dice's coefficient equation (91.13%), and the average computational time was 1.24 s in a PC implementation.

CONCLUSION

In sum, the proposed method achieves satisfactory results with low computational complexity. This algorithm provides a robust and feasible technique for echocardiographic image segmentation. Suggestions for future improvements of the method are provided.

摘要

目的

开发了一种快速稳健的算法,用于自动分割超声心动图像中的左心室心内膜边界。该方法用于计算左心室容量和射血分数估计。

方法

开发了一种快速自适应 B 样条蛇算法,解决了传统主动轮廓的计算问题,并避免了计算成本高昂的优化。在提出的算法中结合了外部力、自适应节点插入和多分辨率策略。使用 B 样条蛇算法在左心室超声心动图像中进行边界提取和面积及体积估计。该方法在 MATLAB 中实现,并使用 50 张医学图像来评估算法性能。使用由专家手动评估的超声心动图像数据库进行实验验证。

结果

与传统算法相比,使用自适应 B 样条技术的方法比较显示出显著的改进。此外,我们的方法与专家手动获得的结果具有合理的一致性。边界检测的准确性通过 Dice 系数方程计算(91.13%),在 PC 实现中的平均计算时间为 1.24 秒。

结论

总之,该方法具有较低的计算复杂度,可获得令人满意的结果。该算法为超声心动图像分割提供了一种稳健且可行的技术。还提出了该方法的未来改进建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验