Suppr超能文献

利用超声心动图图像的非刚性图像配准进行左心室壁运动定量分析。

Left ventricle wall motion quantification from echocardiographic images by non-rigid image registration.

机构信息

Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Int J Comput Assist Radiol Surg. 2012 Sep;7(5):769-83. doi: 10.1007/s11548-012-0786-2. Epub 2012 Jul 31.

Abstract

PURPOSE

The aim of this study is to evaluate the efficiency of applying a new non-rigid image registration method on two-dimensional echocardiographic images for computing the left ventricle (LV) myocardial motion field over a cardiac cycle.

METHODS

The key feature of our method is to register all images in the sequence to a reference image (end-diastole image) using a hierarchical transformation model, which is a combination of an affine transformation for modeling the global LV motion and a free-form deformation (FFD) transformation based on B-splines for modeling the local LV deformation. Registration is done by minimizing a cost function associated with the image similarity based on a global pixel-based matching and the smoothness of transformation. The algorithm uses a fast and robust optimization strategy using a multiresolution approach for the estimation of parameters of the deformation model. The proposed algorithm is evaluated for calculating the displacement curves of two expert-identified anatomical landmarks in apical views of the LV for 10 healthy volunteers and 14 subjects with pathology. The proposed algorithm is also evaluated for classifying the regional LV wall motion abnormality using the calculation of the strain value at the end of systole in 288 segments as scored by two consensual experienced echocardiographers in a three-point scale: 1: normokinesia, 2: hypokinesia, and 3: akinesia. Moreover, we compared the results of the proposed registration algorithm to those previously obtained using the other image registration methods.

RESULTS

Regarding to the reference two experienced echocardiographers, the results demonstrate the proposed algorithm more accurately estimates the displacement curve of the two anatomical landmarks in apical views than the other registration methods in all data set. Moreover, the p values of the t test for the strain value of each segment at the end of systole measured by the proposed algorithm show higher differences than the other registration method. These differences are between each pair of scores in all segments and in three segments of septum independently.

CONCLUSIONS

The clinical results show that the proposed algorithm can improve both the calculation of the displacement curve of every point of LV during a cardiac cycle and the classification of regional LV wall motion abnormality. Therefore, this diagnostic system can be used as a useful tool for clinical evaluation of the regional LV function.

摘要

目的

本研究旨在评估一种新的二维超声心动图像非刚性配准方法在计算整个心动周期左心室(LV)心肌运动场中的效率。

方法

我们方法的关键特征是使用层次变换模型将序列中的所有图像配准到参考图像(舒张末期图像),该模型是仿射变换全局 LV 运动和基于 B 样条的自由变形(FFD)变换的组合,用于建模局部 LV 变形。通过基于全局像素匹配的图像相似性相关的代价函数最小化来进行配准,并基于变换的平滑性来进行。该算法使用快速稳健的优化策略,采用多分辨率方法来估计变形模型的参数。对 10 名健康志愿者和 14 名患有病理学的患者的 LV 心尖视图中的两个专家确定的解剖学标志的位移曲线进行了评估。还使用由两名共识经验丰富的超声心动图专家按 3 分制(1:正常运动、2:运动低下和 3:无运动)评分的收缩末期应变值计算评估了该算法对 288 个节段局部 LV 壁运动异常的分类。此外,我们将提出的配准算法的结果与以前使用其他图像配准方法获得的结果进行了比较。

结果

对于参考的两位经验丰富的超声心动图专家,结果表明,在所有数据集,该算法比其他配准方法更准确地估计了心尖视图中两个解剖学标志的位移曲线。此外,通过提出的算法测量的收缩末期每个节段的应变值的 t 检验的 p 值显示出比其他配准方法更高的差异。这些差异是在所有节段和独立的三个间隔节段中每对评分之间的差异。

结论

临床结果表明,该算法可以提高整个心动周期内每个 LV 点的位移曲线的计算和局部 LV 壁运动异常的分类。因此,该诊断系统可以用作临床评估局部 LV 功能的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验