Suppr超能文献

基于变分水平集的容积 SPECT 数据集左心室自动分割。

Automatic left ventricle segmentation in volumetric SPECT data set by variational level set.

机构信息

Faculty of Engineering, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.

出版信息

Int J Comput Assist Radiol Surg. 2012 Nov;7(6):837-43. doi: 10.1007/s11548-012-0770-x. Epub 2012 Jun 14.

Abstract

INTRODUCTION

Left ventricle (LV) quantification in nuclear medicine images is a challenging task for myocardial perfusion scintigraphy. A hybrid method for left ventricle myocardial border extraction in SPECT datasets was developed and tested to automate LV ventriculography.

METHODS

Automatic segmentation of the LV in volumetric SPECT data was implemented using a variational level set algorithm. The method consists of two steps: (1) initialization and (2) segmentation. Initially, we estimate the initial closed curves in SPECT images using adaptive thresholding and morphological operations. Next, we employ the initial closed curves to estimate the final contour by variational level set. The performance of the proposed approach was evaluated by comparing manually obtained boundaries with automated segmentation contours in 10 SPECT data sets obtained from adult patients. Segmented images by proposed methods were visually compared with manually outlined contours and the performance was evaluated using ROC analysis.

RESULTS

The proposed method and a traditional level set method were compared by computing the sensitivity and specificity of ventricular outlines as well as ROC analysis. The results show that the proposed method can effectively segment LV regions with a sensitivity and specificity of 88.9 and 96.8%, respectively. Experimental results demonstrate the effectiveness and reasonable robustness of the automatic method.

CONCLUSION

A new variational level set technique was able to automatically trace the LV contour in cardiac SPECT data sets, based on the characteristics of the overall region of LV images. Smooth and accurate LV contours were extracted using this new method, reducing the influence of nearby interfering structures including a hypertrophied right ventricle, hepatic or intestinal activity, and pulmonary or intramammary activity.

摘要

简介

在核医学图像中,左心室(LV)定量分析是心肌灌注闪烁显像的一项具有挑战性的任务。本文开发并测试了一种用于 SPECT 数据集左心室心肌边界提取的混合方法,以实现 LV 心室造影的自动化。

方法

使用变分水平集算法实现了容积 SPECT 数据中 LV 的自动分割。该方法包括两个步骤:(1)初始化和(2)分割。首先,我们使用自适应阈值和形态学操作来估计 SPECT 图像中的初始闭合曲线。接下来,我们使用初始闭合曲线通过变分水平集来估计最终轮廓。在 10 个来自成年患者的 SPECT 数据集上,通过将手动获得的边界与自动分割轮廓进行比较,评估了所提出方法的性能。通过 ROC 分析,将所提出的方法分割的图像与手动勾画的轮廓进行了视觉比较,并评估了性能。

结果

通过计算心室轮廓的灵敏度和特异性以及 ROC 分析,比较了所提出的方法和传统的水平集方法。结果表明,所提出的方法可以有效地分割 LV 区域,其灵敏度和特异性分别为 88.9%和 96.8%。实验结果证明了自动方法的有效性和合理的鲁棒性。

结论

基于 LV 图像整体区域的特征,一种新的变分水平集技术能够自动跟踪心脏 SPECT 数据集的 LV 轮廓。使用这种新方法可以提取平滑且准确的 LV 轮廓,减少来自附近干扰结构的影响,包括肥大的右心室、肝或肠活动以及肺或乳腺内活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验