School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
Hippocampus. 2011 Jun;21(6):647-60. doi: 10.1002/hipo.20777. Epub 2010 Mar 15.
The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1.
海马体的 CA3 区域长期以来一直被认为是一个自动联想网络,能够对已知输入进行模式完成。齿状回(DG)区域通常被认为是一个执行模式分离的互补功能的网络。模式完成和分离的神经模型通常指定明确的学习阶段来编码新信息,并假设一个理想的固定阈值,在此阈值停止学习新的模式并开始回忆已知的模式。记忆系统在实践中要复杂得多,记忆的召回程度取决于特定于上下文的目标。在这里,我们提出了我们的内嗅皮层(EC)、DG 和 CA3 网络的尖峰时间分离和完成(STSC)模型,为每个区域赋予类似于现有模型的角色,但通过使用尖峰神经网络添加了时间维度。模拟结果表明:(a)EC-CA3 突触中的尖峰时间依赖性可塑性提供了无需 CA3 回路的情况下的模式完成能力,(b)通过 EC-CA3 突触激活 CA3 细胞与通过 DG-CA3 突触激活相同细胞之间的竞争区分了新输入和已知输入,(c)EC-CA3 突触的调制调整了学习输入与测试输入的相似性,以在任何 DG 活动之前引发直接的 CA3 反应,从而调整了模式完成的阈值。这些机制表明,基于每个输入的新颖性,尖峰时间可以在学习和回忆之间进行仲裁,确保学习-回忆决策的控制驻留在与学习记忆本身相同的子系统中。所提出的调制信号不会覆盖这个决策,但会使系统偏向于学习或回忆。该模型解释了一个经验观察,即新颖性的减少会导致 CA3 和 CA1 中的响应潜伏期相应减少。