Department of Biomedical Engineering, University of California, Irvine, CA, United States of America. Research Center 'Enrico Piaggio', University of Pisa, Pisa, Italy.
J Neural Eng. 2018 Aug;15(4):046009. doi: 10.1088/1741-2552/aabc20. Epub 2018 Apr 6.
Functions ascribed to the hippocampal sub-regions for encoding episodic memories include the separation of activity patterns propagated from the entorhinal cortex (EC) into the dentate gyrus (DG) and pattern completion in CA3 region. Since a direct assessment of these functions is lacking at the level of specific axonal inputs, our goal is to directly measure the separation and completion of distinct axonal inputs in engineered pairs of hippocampal sub-regional circuits.
We co-cultured EC-DG, DG-CA3, CA3-CA1 or CA1-EC neurons in a two-chamber PDMS device over a micro-electrode array (MEA60), inter-connected via distinct axons that grow through the micro-tunnels between the compartments. Taking advantage of the axonal accessibility, we quantified pattern separation and completion of the evoked activity transmitted through the tunnels from source into target well. Since pattern separation can be inferred when inputs are more correlated than outputs, we first compared the correlations among axonal inputs with those of target somata outputs. We then compared, in an analog approach, the distributions of correlation distances between rate patterns of the axonal inputs inside the tunnels with those of the somata outputs evoked in the target well. Finally, in a digital approach, we measured the spatial population distances between binary patterns of the same axonal inputs and somata outputs.
We found the strongest separation of the propagated axonal inputs when EC was axonally connected to DG, with a decline in separation to CA3 and to CA1 for both rate and digital approaches. Furthermore, the digital approach showed stronger pattern completion in CA3, then CA1 and EC.
To the best of our knowledge, these are the first direct measures of pattern separation and completion for axonal transmission to the somata target outputs at the rate and digital population levels in each of four stages of the EC-DG-CA3-CA1 circuit.
海马亚区被认为具有对情景记忆进行编码的功能,包括从内嗅皮层(entorhinal cortex,EC)传播的活动模式在齿状回(dentate gyrus,DG)中的分离和 CA3 区域的模式完成。由于缺乏对特定轴突输入水平下这些功能的直接评估,我们的目标是直接测量在工程化的海马亚区回路的特定轴突输入的分离和完成。
我们在具有微电极阵列(MEA60)的 PDMS 两室装置中共同培养 EC-DG、DG-CA3、CA3-CA1 或 CA1-EC 神经元,通过穿过隔室之间微隧道生长的不同轴突相互连接。利用轴突可及性,我们量化了从源到目标井通过隧道传输的诱发活动的模式分离和完成。由于当输入比输出更相关时可以推断出模式分离,因此我们首先比较了轴突输入之间的相关性与目标体神经元输出之间的相关性。然后,我们以模拟方式比较了隧道内轴突输入的相关距离分布与目标井中诱发的体神经元输出的相关距离分布。最后,在数字方法中,我们测量了相同轴突输入和体神经元输出的二进制模式之间的空间群体距离。
我们发现当 EC 通过轴突与 DG 连接时,传播的轴突输入的分离最强,而在比率和数字方法中,与 CA3 和 CA1 的分离都有所下降。此外,数字方法在 CA3 中显示出更强的模式完成,然后是 CA1 和 EC。
据我们所知,这些是在 EC-DG-CA3-CA1 电路的四个阶段中的每个阶段中,针对到体神经元目标输出的轴突传输的比率和数字群体水平,对模式分离和完成的首次直接测量。