Suppr超能文献

从反应相的角度对化学反应机制进行计算分析:隐藏的中间产物和隐藏的过渡态。

Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

机构信息

Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA.

出版信息

Acc Chem Res. 2010 May 18;43(5):591-601. doi: 10.1021/ar900013p.

Abstract

Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists (A(n,s) < 0) the curving of the path, and thus the structural changes of the reaction complex. URVA can show the mechanism of a reaction expressed in terms of reaction phases, revealing the sequence of chemical processes in the reaction complex and making it possible to determine those electronic factors that control the mechanism and energetics of the reaction. The magnitude of adiabatic curvature coupling coefficients is related to strength and polarizability of the bonds being broken. Transient points along the reaction path are associated with hidden intermediates and hidden transition states, which can be converted into real intermediates and transition states when the reaction conditions or the substitution pattern of the reaction complex are appropriately changed. Accordingly, URVA represents a theoretical tool with tremendous experimental potential, offering the chemist the ability to assert greater control over reactions.

摘要

理解化学反应机制的计算方法通常从确定起始材料、过渡态和产物的相对能量开始,也就是说,确定反应复合物势能面上的稳定点。通过内禀反应坐标 (IRC) 研究中间体,可以逐步阐明在稳定态之间的反应路径上涉及的能量,从而深入了解反应物的命运。对于化学反应机制和动力学的详细分析,反应路径哈密顿量 (RPH) 和统一反应谷方法 (URVA) 是一种有效的组合。反应复合物的化学转化反映在反应路径方向 t(s) 和反应路径曲率 k(s) 的变化中,这两个参数都表示为路径长度 s 的函数。该信息可用于将化学反应的反应路径,以及反应机制,划分为描述反应复合物化学相关变化的反应相:(i) 接触相,其特征为范德华相互作用;(ii) 准备相,反应物在其中为化学过程做准备;(iii) 一个或多个过渡态相,其中发生键断裂和键形成的化学过程;(iv) 产物调整相;以及 (v) 分离相。在本综述中,我们详细考察了 URVA 的机制分析,重点关注了我们实验室最近在各种反应类型方面的理论见解。通过利用与反应复合物的内坐标 q(n)(s) 相关的局部绝热振动模式的概念,可以通过绝热曲率耦合系数 A(n,s)(s) 确定每个反应相的化学特征。这些量揭示了局部绝热振动模式是支持 (A(n,s) > 0) 还是抵抗 (A(n,s) < 0) 路径弯曲,从而揭示反应复合物的结构变化。URVA 可以以反应相的形式表示反应的机制,揭示反应复合物中化学过程的顺序,并使确定控制反应机制和能量学的电子因素成为可能。绝热曲率耦合系数的大小与断裂键的强度和极化率有关。反应路径上的瞬态点与隐藏中间体和隐藏过渡态有关,当反应条件或反应复合物的取代模式适当改变时,这些中间体和过渡态可以转化为实际中间体和过渡态。因此,URVA 代表了一种具有巨大实验潜力的理论工具,为化学家提供了更大的控制反应的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验