Vogiatzis Georgios G, van Breemen Lambèrt C A, Hütter Markus
Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
Dutch Polymer Institute, PO Box 902, 5600 AX Eindhoven, The Netherlands.
J Phys Chem B. 2021 Jul 8;125(26):7273-7289. doi: 10.1021/acs.jpcb.1c02618. Epub 2021 Jun 23.
Transition pathways on the energy landscape of atactic polystyrene (aPS) glassy specimens are probed below its glass-transition temperature. Each of these transitions is considered an elementary structural relaxation event, whose corresponding rate constant is calculated by applying multidimensional transition-state theory. Initially, a wide spectrum of first-order saddle points surrounding local minima on the energy landscape is discovered by a stabilized hybrid eigenmode-following method. Then, (minimal-energy) "reaction paths" to the adjacent minima are constructed by a quadratic descent method. The heights of the free energy, the potential energy, and the entropy barriers are estimated for every connected triplet of transition state and minima. The resulting distribution of free energy barriers is asymmetric and extremely broad, extending to very high barrier heights (over 50 ); the corresponding distribution of rate constants extends over 30 orders of magnitude, with well-defined peaks at the time scales corresponding to the subglass relaxations of polystyrene. Analysis of the curvature along the reaction paths reveals a multitude of different rearrangement mechanisms; some of them bearing multiple distinct phases. Finally, connections to theoretical models of the glass phenomenology allows for the prediction, based on first-principles, of the "ideal" glass-transition temperature entering the Vogel-Fulcher-Tammann (VFT) equation describing the super-Arrhenius temperature dependence of glassy dynamics. Our predictions of the time scales of the subglass relaxations and the VFT temperature are in favorable agreement with available experimental literature data for systems of similar molecular weight under the same conditions.
在无规聚苯乙烯(aPS)玻璃态样品的玻璃化转变温度以下,对其能量景观上的转变路径进行了探测。这些转变中的每一个都被视为一个基本的结构弛豫事件,其相应的速率常数通过应用多维过渡态理论来计算。首先,通过一种稳定的混合本征模跟踪方法,在能量景观上发现了围绕局部极小值的广泛的一阶鞍点。然后,通过二次下降法构建到相邻极小值的(最小能量)“反应路径”。对于过渡态和极小值的每一个相连三元组,估计自由能、势能和熵垒的高度。由此得到的自由能垒分布是不对称的且极其宽广,延伸到非常高的垒高度(超过50);相应的速率常数分布延伸超过30个数量级,在与聚苯乙烯亚玻璃弛豫相对应的时间尺度上有明确的峰值。对沿反应路径的曲率分析揭示了多种不同的重排机制;其中一些具有多个不同的阶段。最后,与玻璃现象学的理论模型建立联系,使得基于第一性原理能够预测进入描述玻璃态动力学超阿伦尼乌斯温度依赖性的Vogel-Fulcher-Tammann(VFT)方程的“理想”玻璃化转变温度。我们对亚玻璃弛豫时间尺度和VFT温度的预测与相同条件下类似分子量系统的现有实验文献数据吻合良好。