Suppr超能文献

DNA 结构、可变形性和核小体定位。

DNA architecture, deformability, and nucleosome positioning.

机构信息

Rutgers, State University of New Jersey, Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, NJ 08854, USA.

出版信息

J Biomol Struct Dyn. 2010 Jun;27(6):725-39. doi: 10.1080/073911010010524943.

Abstract

The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway - the minor-groove width and the deformations of successive base pairs - determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic '601' sequence on DNA. We 'thread' these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflect the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes.

摘要

DNA 在核小体上的定位对于遗传信息的组织和表达都至关重要。在这里,我们关注的是在不断增长的已知高分辨率核心颗粒结构库中发现的 DNA 构象信号,以及这些特征可能如何有助于核小体在特定 DNA 序列上的定位。我们调查了蛋白质-DNA 组装的化学成分,并沿着 DNA 超螺旋路径提取特征——小沟宽度和连续碱基对的变形——这些特征在结构中可以以合理的精度确定。我们还研究了各种核小体核心颗粒结构在多大程度上适应了所观察到的结晶序列的设置,以及已知的高亲和力合成“601”序列在 DNA 上的定位。我们将这些序列“穿线”在不同的结构模板上,并使用基于知识的势能来估计每个设置的成本,这些势能反映了其他高分辨率蛋白质结合复合物中 DNA 碱基对步骤的构象特性。

相似文献

1
DNA architecture, deformability, and nucleosome positioning.
J Biomol Struct Dyn. 2010 Jun;27(6):725-39. doi: 10.1080/073911010010524943.
2
Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.
J Biomol Struct Dyn. 2010 Jun;27(6):821-41. doi: 10.1080/073911010010524947.
3
The structure of DNA in the nucleosome core.
Nature. 2003 May 8;423(6936):145-50. doi: 10.1038/nature01595.
5
A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning.
J Mol Biol. 2007 Aug 17;371(3):725-38. doi: 10.1016/j.jmb.2007.05.048. Epub 2007 May 24.
6
Working the kinks out of nucleosomal DNA.
Curr Opin Struct Biol. 2011 Jun;21(3):348-57. doi: 10.1016/j.sbi.2011.03.006. Epub 2011 Apr 7.
7
Painting a perspective on the landscape of nucleosome positioning.
J Biomol Struct Dyn. 2010 Jun;27(6):795-802. doi: 10.1080/073911010010524946.
8
Nucleosome positioning patterns derived from human apoptotic nucleosomes.
J Biomol Struct Dyn. 2011 Dec;29(3):577-83. doi: 10.1080/073911011010524995.
10
DNA nanomechanics in the nucleosome.
Structure. 2009 Apr 15;17(4):579-89. doi: 10.1016/j.str.2009.01.013.

引用本文的文献

1
Defining transcription factor nucleosome binding with Pioneer-seq.
PLoS Genet. 2025 Aug 14;21(8):e1011813. doi: 10.1371/journal.pgen.1011813. eCollection 2025 Aug.
2
Structural Plasticity of Pioneer Factor Sox2 and DNA Bendability Modulate Nucleosome Engagement and Sox2-Oct4 Synergism.
J Mol Biol. 2023 Jan 30;435(2):167916. doi: 10.1016/j.jmb.2022.167916. Epub 2022 Dec 7.
3
Quantitative contribution of the spacer length in the supercoiling-sensitivity of bacterial promoters.
Nucleic Acids Res. 2022 Jul 22;50(13):7287-7297. doi: 10.1093/nar/gkac579.
5
High-resolution biophysical analysis of the dynamics of nucleosome formation.
Sci Rep. 2016 Jun 6;6:27337. doi: 10.1038/srep27337.
6
7
The intrinsic mechanics of B-DNA in solution characterized by NMR.
Nucleic Acids Res. 2016 Apr 20;44(7):3432-47. doi: 10.1093/nar/gkw084. Epub 2016 Feb 15.
8
Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair.
DNA Repair (Amst). 2015 Aug;32:113-119. doi: 10.1016/j.dnarep.2015.04.021. Epub 2015 May 2.
9
Training-free atomistic prediction of nucleosome occupancy.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6293-8. doi: 10.1073/pnas.1404475111. Epub 2014 Apr 14.
10
Calculation of nucleosomal DNA deformation energy: its implication for nucleosome positioning.
Chromosome Res. 2012 Oct;20(7):889-902. doi: 10.1007/s10577-012-9328-6. Epub 2012 Dec 5.

本文引用的文献

1
DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent.
Nucleic Acids Res. 2010 Apr;38(6):2081-8. doi: 10.1093/nar/gkp1174. Epub 2009 Dec 21.
2
Using DNA mechanics to predict in vitro nucleosome positions and formation energies.
Nucleic Acids Res. 2009 Aug;37(14):4707-22. doi: 10.1093/nar/gkp475. Epub 2009 Jun 9.
4
The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure.
Nat Struct Mol Biol. 2008 Oct;15(10):1122-4. doi: 10.1038/nsmb.1489. Epub 2008 Sep 14.
6
Site selectivity of platinum anticancer therapeutics.
Nat Chem Biol. 2008 Feb;4(2):110-2. doi: 10.1038/nchembio.2007.58. Epub 2007 Dec 23.
8
Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.
Nature. 2007 Aug 2;448(7153):553-60. doi: 10.1038/nature06008. Epub 2007 Jul 1.
9
A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning.
J Mol Biol. 2007 Aug 17;371(3):725-38. doi: 10.1016/j.jmb.2007.05.048. Epub 2007 May 24.
10
High-resolution profiling of histone methylations in the human genome.
Cell. 2007 May 18;129(4):823-37. doi: 10.1016/j.cell.2007.05.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验