Suppr超能文献

基于结构的体外指导核小体定位的 DNA 序列模式分析。

Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.

机构信息

Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.

出版信息

J Biomol Struct Dyn. 2010 Jun;27(6):821-41. doi: 10.1080/073911010010524947.

Abstract

Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken beta-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the '601' nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp - an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning 'rules' they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL+/- 3.5 and +/- 5.5, which is similar to the alpha-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the '601' clone) the same YR/YYRR motifs occur predominantly at the sites SHL +/- 1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures. Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.

摘要

最近对全基因组核小体组织的研究表明,DNA 序列是核小体定位的主要决定因素之一。尽管人们一直在寻找核小体 DNA 中编码的潜在模式,但我们对这些模式的了解仍然有限。基于我们对 DNA 变形能的评估,我们开发了新的评分函数来预测核小体定位。与早期研究相比,我们的方法有三个主要区别:(i)我们假设核小体 DNA 的长度从 146 到 147bp 不等;(ii)我们考虑嘧啶-嘌呤(YR)二聚体在其相邻位置的各向异性柔性(例如,YYRR 与 RYRY);(iii)我们假设交替的富含 AT 和富含 GC 的基序反映了组蛋白精氨酸与 DNA 之间在小沟中的序列依赖性相互作用。使用这些函数,我们分析了在体外以单核苷酸分辨率映射的 20 个核小体位置(包括克隆 601、603、605、pGUB 质粒、鸡β-球蛋白和三个 5S rDNA 基因)。我们以 1bp 的精度预测了 20 个位置中的 15 个,以 2bp 的精度预测了 2 个。“601”核小体的预测位置(即计算得分的最优位置)与实验确定的唯一位置相差不超过 1bp-这一精度超过了早期的预测。我们的分析揭示了核小体序列的明显异质性,这些序列可以根据它们所遵循的定位“规则”分为两组。一组序列在小沟弯曲位点 SHL+/-3.5 和 +/-5.5 处富含高度可变形的 YR/YYRR 基序,这与大多数结晶核小体中使用的α卫星序列相似。显然,这些核小体的定位是由组蛋白 H2A/H2B 与核小体 DNA 末端部分之间的相互作用决定的。在另一组(包括“601”克隆)中,相同的 YR/YYRR 基序主要出现在 SHL +/-1.5 位点。H3/H4 四聚体与核小体 DNA 中心部分之间的相互作用可能是导致该组核小体定位的原因,并且这些核小体中的 DNA 轨迹可能在细节上与已发表的结构不同。因此,从立体化学的角度来看,这里研究的体外核小体遵循 X 射线样模式(核小体 DNA 末端部分有强烈变形)或替代模式(核小体 DNA 中心部分主要发生变形)。这里呈现的结果可能有助于对核小体进行全基因组分类,将核小体的结构和热力学特征与指导其位置的潜在 DNA 序列模式联系起来。

相似文献

1
Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.
J Biomol Struct Dyn. 2010 Jun;27(6):821-41. doi: 10.1080/073911010010524947.
3
DNA architecture, deformability, and nucleosome positioning.
J Biomol Struct Dyn. 2010 Jun;27(6):725-39. doi: 10.1080/073911010010524943.
5
Sequence-dependent nucleosome positioning.
J Mol Biol. 2009 Mar 13;386(5):1411-22. doi: 10.1016/j.jmb.2008.11.049. Epub 2008 Dec 3.
6
Drosophila H2A and H2A.Z Nucleosome Sequences Reveal Different Nucleosome Positioning Sequence Patterns.
J Comput Biol. 2017 Apr;24(4):289-298. doi: 10.1089/cmb.2016.0173. Epub 2016 Dec 19.
8
Weakly positioned nucleosomes enhance the transcriptional competency of chromatin.
PLoS One. 2010 Sep 24;5(9):e12984. doi: 10.1371/journal.pone.0012984.
9
Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes.
Genome Res. 2009 Jun;19(6):967-77. doi: 10.1101/gr.084830.108. Epub 2009 Feb 26.
10
Effects of DNA sequence and histone-histone interactions on nucleosome placement.
J Mol Biol. 1990 Nov 5;216(1):69-84. doi: 10.1016/S0022-2836(05)80061-0.

引用本文的文献

2
Interpretable deep residual network uncovers nucleosome positioning and associated features.
Nucleic Acids Res. 2024 Aug 27;52(15):8734-8745. doi: 10.1093/nar/gkae623.
4
Bisulfite probing reveals DNA structural intricacies.
Nucleic Acids Res. 2023 Apr 24;51(7):3261-3269. doi: 10.1093/nar/gkad115.
5
Genome-wide maps of rare and atypical UV photoproducts reveal distinct patterns of damage formation and mutagenesis in yeast chromatin.
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2216907120. doi: 10.1073/pnas.2216907120. Epub 2023 Feb 28.
7
Molecular mechanism of UV damage modulation in nucleosomes.
Comput Struct Biotechnol J. 2022 Sep 14;20:5393-5400. doi: 10.1016/j.csbj.2022.08.071. eCollection 2022.
8
Galaxy Dnpatterntools for Computational Analysis of Nucleosome Positioning Sequence Patterns.
Int J Mol Sci. 2022 Apr 28;23(9):4869. doi: 10.3390/ijms23094869.
9
Peculiarities of Gene Regulation and Chromatin Structure.
Int J Mol Sci. 2021 May 13;22(10):5168. doi: 10.3390/ijms22105168.
10
Temporal gene regulation by p53 is associated with the rotational setting of its binding sites in nucleosomes.
Cell Cycle. 2021 Apr;20(8):792-807. doi: 10.1080/15384101.2021.1904554. Epub 2021 Mar 25.

本文引用的文献

1
Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II.
Nat Struct Mol Biol. 2009 Dec;16(12):1272-8. doi: 10.1038/nsmb.1689. Epub 2009 Nov 22.
2
The role of DNA shape in protein-DNA recognition.
Nature. 2009 Oct 29;461(7268):1248-53. doi: 10.1038/nature08473.
3
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.
Nat Struct Mol Biol. 2009 Aug;16(8):847-52. doi: 10.1038/nsmb.1636. Epub 2009 Jul 20.
4
A translational signature for nucleosome positioning in vivo.
Nucleic Acids Res. 2009 Sep;37(16):5309-21. doi: 10.1093/nar/gkp574. Epub 2009 Jul 13.
5
Using DNA mechanics to predict in vitro nucleosome positions and formation energies.
Nucleic Acids Res. 2009 Aug;37(14):4707-22. doi: 10.1093/nar/gkp475. Epub 2009 Jun 9.
6
High-resolution mapping of sequence-directed nucleosome positioning on genomic DNA.
J Mol Biol. 2009 Jul 10;390(2):292-305. doi: 10.1016/j.jmb.2009.04.079. Epub 2009 May 7.
9
High-resolution dynamic mapping of histone-DNA interactions in a nucleosome.
Nat Struct Mol Biol. 2009 Feb;16(2):124-9. doi: 10.1038/nsmb.1526. Epub 2009 Jan 11.
10
Nucleosome DNA bendability matrix (C. elegans).
J Biomol Struct Dyn. 2009 Feb;26(4):403-11. doi: 10.1080/07391102.2009.10507255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验