Shrader T E, Crothers D M
Department of Chemistry, Yale University, New Haven, CT 06511.
J Mol Biol. 1990 Nov 5;216(1):69-84. doi: 10.1016/S0022-2836(05)80061-0.
Using competitive reconstitution, we have refined the parameters for the binding of histone octamers to artificial nucleosome-positioning sequences of the form: (A/T3nn(G/C)3nn. We find that the optimal period between flexible segments is approximately 10.1 base-pairs, supporting the view that the DNA on the nucleosome surface is overwound. The strongest requirement for flexible DNA is near the protein dyad. However, we see no indication of changes in DNA helical repeat in this region. Using a series of repetitive sequences, we confirm that neither all A/T-rich nor all G/C-rich regions are identical in promoting nucleosome formation. Surprisingly, A/T-rich segments containing the TpA step, subject to purine-purine clash in the minor groove, favor nucleosome formation over sequences lacking this step. Short tracts of adenine residues are found to position on the histone surface like other A/T-rich regions, in the manner predicted by the direction of their sequence-directed bends as determined by electrophoretic methods. Tracts containing five adenine residues are extremely aniostropic in their flexibility and are strongly detrimental to nucleosome formation when positioned for major groove compression. Longer adenine tracts are found to position near the ends of the nucleosomal DNA. However, other positions may be occupied by an A12 tract, with only a minor penalty in the free energy of nucleosome formation. Overall, reconstituted nucleosome positions are translationally degenerate, suggesting a weak dependence on DNA flexibility for nucleosome positioning. Dinucleosomal reconstitutions on tandem dimers of the 5 S RNA gene of Lytechinus variegatus demonstrate a weak phasing dependence for the interaction between nucleosomes. This interaction is maximal for the 202 base-pair repeat and suggests a co-operative mechanism for the formation of ordered nucleosomal arrays based on a combination of DNA flexibility and nucleosome-nucleosome interactions.
通过竞争性重组,我们优化了组蛋白八聚体与以下形式的人工核小体定位序列结合的参数:(A/T)3nn(G/C)3nn。我们发现柔性片段之间的最佳周期约为10.1个碱基对,这支持了核小体表面的DNA是过度缠绕的观点。对柔性DNA的最强需求出现在蛋白质二分体附近。然而,我们没有看到该区域DNA螺旋重复发生变化的迹象。使用一系列重复序列,我们证实并非所有富含A/T或富含G/C的区域在促进核小体形成方面都是相同的。令人惊讶的是,含有TpA步的富含A/T的片段,在小沟中会发生嘌呤-嘌呤冲突,与缺乏该步的序列相比,更有利于核小体形成。发现短的腺嘌呤残基序列像其他富含A/T的区域一样定位在组蛋白表面,其定位方式由电泳方法确定的序列导向弯曲方向所预测。含有五个腺嘌呤残基的片段在柔性方面具有极强的各向异性,当定位为大沟压缩时,对核小体形成有强烈的不利影响。发现较长的腺嘌呤序列定位在核小体DNA的末端附近。然而,其他位置可能被一个A12序列占据,在核小体形成的自由能上只有轻微的损失。总体而言,重组核小体的位置在平移上是简并的,这表明核小体定位对DNA柔性的依赖性较弱。对多变荔枝海胆5 S RNA基因串联二聚体进行的双核小体重组表明,核小体之间的相互作用对相位的依赖性较弱。这种相互作用在202个碱基对的重复序列中最大,这表明基于DNA柔性和核小体-核小体相互作用的组合,形成有序核小体阵列存在一种协同机制。