Suppr超能文献

pssM 基因突变导致根瘤菌属 viciae-Pisum sativum 共生关系中断。

Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum sativum symbiosis.

机构信息

Skryabin Institute of Biochemistry and Physiology of Micro-organisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.

出版信息

J Appl Microbiol. 2010 Aug;109(2):731-742. doi: 10.1111/j.1365-2672.2010.04702.x. Epub 2010 Feb 11.

Abstract

AIMS

To study the question whether acidic exopolysaccharide (EPS) modification, e.g. pyruvylation, plays any role in the development of Rhizobium leguminosarum/Pisum sativum symbiosis.

METHOD AND RESULTS

The amino acid sequence deduced from the pssM gene, localized within the pss (polysaccharide synthesis) gene locus, was shown to be homologous to several known and putative ketal pyruvate transferases, including ExoV from Sinorhizobium meliloti and GumL from Xanthomonas campestris. Rh. l. bv. viciae strain VF39 carrying a Km-cassette insertion into the pssM gene was obtained by the gene replacement technique. Knock-out of pssM led to the absence of the pyruvic acid ketal group at the subterminal glucose in the repeating unit of EPS as it was shown by (13)C and (1)H nuclear magnetic resonance (NMR) analysis. Complementation in trans restored the EPS modification in the pssM mutant. Disruption of the pssM gene resulted also in the formation of aberrant non-nitrogen-fixing nodules on peas. Ultrastructural studies of mutant nodules revealed normal nodule invasion and release of bacteria into the plant cell cytoplasm, but further differentiation of bacteroids was impaired, and the existing symbiosomes underwent lysis.

CONCLUSION

PssM encodes ketal pyruvate transferase involved in the modification of the Rh. l. bv. viciae EPS. The absence of subterminal glucose pyruvylation in the EPS repeating units negatively influences (directly or indirectly) the formation of the nitrogen-fixing symbiosis with peas.

SIGNIFICANCE AND IMPACT OF THE STUDY

Our finding that the absence of modification even at the single position of EPS is likely to be crucial for establishment of nitrogen-fixing symbiosis argues in favour of the idea concerning their specific signalling role in this process.

摘要

目的

研究酸性胞外多糖(EPS)修饰(如丙酮酸化)是否在根瘤菌/豌豆共生关系的发展中起作用。

方法和结果

从 pssM 基因推导的氨基酸序列,位于 pss(多糖合成)基因座内,与几个已知和假定的酮基丙酮酸转移酶同源,包括 Sinorhizobium meliloti 的 ExoV 和 Xanthomonas campestris 的 GumL。通过基因替换技术获得了在 pssM 基因内插入 Km 盒的 Rh. l. bv. viciae 菌株 VF39。(13)C 和(1)H 核磁共振(NMR)分析表明,pssM 的敲除导致 EPS 重复单元中亚末端葡萄糖上的丙酮酸酮基基团缺失。在 pssM 突变体中,通过反式互补恢复了 EPS 修饰。pssM 基因的破坏也导致豌豆上形成异常的非固氮结瘤。突变体结瘤的超微结构研究表明,细菌正常侵入和释放到植物细胞质中,但类细菌的进一步分化受到损害,现有的共生体发生裂解。

结论

PssM 编码参与 Rh. l. bv. viciae EPS 修饰的酮基丙酮酸转移酶。EPS 重复单元中亚末端葡萄糖丙酮酸化的缺失(直接或间接)对与豌豆形成固氮共生关系产生负面影响。

研究的意义和影响

我们的发现表明,即使 EPS 的单个位置的修饰缺失也可能对建立固氮共生关系至关重要,这支持了 EPS 在该过程中具有特定信号作用的观点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验