Suppr超能文献

通过功能丧失诱变筛选鉴定影响翅膀形态发生的基因,并研究 med15 在翅膀发育过程中的功能。

Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development.

机构信息

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.

出版信息

Genetics. 2010 Jun;185(2):671-84. doi: 10.1534/genetics.109.113670. Epub 2010 Mar 16.

Abstract

The development of the Drosophila melanogaster wing depends on the correct regulation of cell survival, growth, proliferation, differentiation, and pattern formation. These processes, and the genes controlling then, are common to the development of epithelia in many different organisms. To identify additional genes contributing to wing development we have carried out a genetic screen in mosaic wings carrying clones of homozygous mutant cells. We obtained 12 complementation groups corresponding to genes with a proven role in wing formation such as smoothened, thick veins, mothers against dpp, expanded, and fat and 71 new complementation groups affecting the pattern of veins and the size of wing. We mapped one of these groups to the mediator15 gene (med15), a component of the Mediator complex. We show that Med15 and other members of the Mediator complex are required, among other processes, for the transcription of decapentaplegic target genes.

摘要

黑腹果蝇翅膀的发育依赖于细胞存活、生长、增殖、分化和形态发生的正确调节。这些过程和控制它们的基因与许多不同生物体中上皮组织的发育是共同的。为了鉴定对翅膀发育有贡献的其他基因,我们在携带纯合突变细胞克隆的嵌合体翅膀中进行了遗传筛选。我们获得了 12 个互补群,对应于在翅膀形成中具有已知作用的基因,如 smoothened、thick veins、mothers against dpp、 expanded 和 fat,以及 71 个影响脉纹模式和翅膀大小的新的互补群。我们将其中一个基因簇定位到 Mediator15 基因(med15),它是 Mediator 复合物的一个组成部分。我们表明,Med15 和 Mediator 复合物的其他成员除了其他过程外,还需要转录 decapentaplegic 靶基因。

相似文献

2
A gain-of-function screen identifying genes required for vein formation in the Drosophila melanogaster wing.
Genetics. 2006 Nov;174(3):1635-59. doi: 10.1534/genetics.106.061283. Epub 2006 Sep 15.
3
Decapentaplegic and growth control in the developing Drosophila wing.
Nature. 2015 Nov 19;527(7578):375-8. doi: 10.1038/nature15730. Epub 2015 Nov 9.
4
Coupling between dynamic 3D tissue architecture and BMP morphogen signaling during wing morphogenesis.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4352-4361. doi: 10.1073/pnas.1815427116. Epub 2019 Feb 13.
5
A gain-of-function screen identifying genes required for growth and pattern formation of the Drosophila melanogaster wing.
Genetics. 2009 Nov;183(3):1005-26. doi: 10.1534/genetics.109.107748. Epub 2009 Sep 7.
6
bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway.
Fly (Austin). 2018;12(2):105-117. doi: 10.1080/19336934.2018.1499370. Epub 2018 Aug 19.
9
Gene expression during Drosophila wing morphogenesis and differentiation.
Genetics. 2005 Oct;171(2):625-38. doi: 10.1534/genetics.105.043687. Epub 2005 Jul 5.
10
Ion Channel Contributions to Wing Development in .
G3 (Bethesda). 2019 Apr 9;9(4):999-1008. doi: 10.1534/g3.119.400028.

引用本文的文献

1
A Mediator subunit imparts robustness to a polyphenism decision.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2308816120. doi: 10.1073/pnas.2308816120. Epub 2023 Aug 1.
2
The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription.
PLoS Genet. 2020 May 28;16(5):e1008832. doi: 10.1371/journal.pgen.1008832. eCollection 2020 May.
3
Understanding Obesity as a Risk Factor for Uterine Tumors Using Drosophila.
Adv Exp Med Biol. 2019;1167:129-155. doi: 10.1007/978-3-030-23629-8_8.
4
In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects?
J Neurodev Disord. 2019 Jun 7;11(1):7. doi: 10.1186/s11689-019-9267-z.
5
Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4.
Dev Cell. 2019 May 20;49(4):556-573.e6. doi: 10.1016/j.devcel.2019.04.033.
6
An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila.
Nat Commun. 2018 Oct 8;9(1):4160. doi: 10.1038/s41467-018-06537-y.
8
A new A-P compartment boundary and organizer in holometabolous insect wings.
Sci Rep. 2017 Nov 27;7(1):16337. doi: 10.1038/s41598-017-16553-5.
10
Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes.
Cell Rep. 2013 Feb 21;3(2):309-18. doi: 10.1016/j.celrep.2013.01.008. Epub 2013 Feb 8.

本文引用的文献

1
Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways.
Cell. 2009 Nov 13;139(4):757-69. doi: 10.1016/j.cell.2009.09.035.
2
Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis.
Development. 2009 Dec;136(24):4165-76. doi: 10.1242/dev.044263. Epub 2009 Nov 11.
3
A gain-of-function screen identifying genes required for growth and pattern formation of the Drosophila melanogaster wing.
Genetics. 2009 Nov;183(3):1005-26. doi: 10.1534/genetics.109.107748. Epub 2009 Sep 7.
4
Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6644-9. doi: 10.1073/pnas.0709749105. Epub 2008 May 1.
5
Viability of Homozygous Deficiencies in Somatic Cells of DROSOPHILA MELANOGASTER.
Genetics. 1979 Mar;91(3):443-53. doi: 10.1093/genetics/91.3.443.
6
An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis.
Nature. 2006 Aug 10;442(7103):700-4. doi: 10.1038/nature04942. Epub 2006 Jun 21.
9
Targets of the Gal4 transcription activator in functional transcription complexes.
Mol Cell Biol. 2005 Oct;25(20):9092-102. doi: 10.1128/MCB.25.20.9092-9102.2005.
10
The mammalian Mediator complex and its role in transcriptional regulation.
Trends Biochem Sci. 2005 May;30(5):250-5. doi: 10.1016/j.tibs.2005.03.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验