Suppr超能文献

高脂肪饮食喂养的小鼠中肝酮生成的渐进适应。

Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet.

机构信息

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA.

出版信息

Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1226-35. doi: 10.1152/ajpendo.00033.2010. Epub 2010 Mar 16.

Abstract

Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.

摘要

肝脏酮体生成为禁食期间提供了重要的全身燃料,因为酮体可被大多数外周组织氧化,而且与葡萄糖不同,可通过线粒体β氧化从脂肪酸合成。由于功能性线粒体脂肪氧化可能是胰岛素抵抗组织的一个协同因子,本研究的目的是确定在小鼠中,饮食诱导的胰岛素抵抗是否会导致肝脏脂肪氧化受损,从而导致酮体生成缺陷。清醒和不受约束的小鼠中的酮体周转率(微摩尔/分钟)对肝脏脂肪氧化的诱导和减少有反应,如在进食(0.50+/-0.1)到禁食(3.8+/-0.2)的转变期间增加了八倍,以及 PPARalpha(-/-)小鼠中禁食酮体周转率的急剧减弱(1.0+/-0.1)。通过高脂喂养 8 周使 C57BL/6 小鼠肥胖和胰岛素抵抗,其调节肝脏脂肪氧化的基因表达正常,而在饮食上 16 周会诱导这些基因的表达,并刺激肝脏线粒体脂肪氧化的功能,如禁食酮生成增加 40%和短链酰基辅酶 A 增加两倍。总之,这些发现表明在高脂喂养期间肝脏酮体生成逐渐适应,导致高脂饮食 16 周后肝脏脂肪氧化增加。我们得出结论,在小鼠肝脏胰岛素抵抗的起始时,线粒体脂肪氧化被刺激而不是受损。

相似文献

1
Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet.
Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1226-35. doi: 10.1152/ajpendo.00033.2010. Epub 2010 Mar 16.
2
Dietary capsaicin reduces obesity-induced insulin resistance and hepatic steatosis in obese mice fed a high-fat diet.
Obesity (Silver Spring). 2010 Apr;18(4):780-7. doi: 10.1038/oby.2009.301. Epub 2009 Oct 1.
3
Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.
Am J Physiol Endocrinol Metab. 2014 Jul 15;307(2):E176-85. doi: 10.1152/ajpendo.00087.2014. Epub 2014 May 27.
4
Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.
Am J Physiol Endocrinol Metab. 2016 Apr 1;310(7):E484-94. doi: 10.1152/ajpendo.00492.2015. Epub 2016 Jan 26.
6
Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes.
Nature. 2004 Dec 23;432(7020):1027-32. doi: 10.1038/nature03047.
7
Branched-chain amino acids alter cellular redox to induce lipid oxidation and reduce de novo lipogenesis in the liver.
Am J Physiol Endocrinol Metab. 2023 Apr 1;324(4):E299-E313. doi: 10.1152/ajpendo.00307.2022. Epub 2023 Feb 15.
9
Beyond lipids, pharmacological PPARalpha activation has important effects on amino acid metabolism as studied in the rat.
Am J Physiol Endocrinol Metab. 2007 Apr;292(4):E1157-65. doi: 10.1152/ajpendo.00254.2006. Epub 2006 Dec 12.
10
PAQR9 regulates hepatic ketogenesis and fatty acid oxidation during fasting by modulating protein stability of PPARα.
Mol Metab. 2021 Nov;53:101331. doi: 10.1016/j.molmet.2021.101331. Epub 2021 Aug 30.

引用本文的文献

6
Nicotinamide N-methyltransferase inhibition mitigates obesity-related metabolic dysfunction.
Diabetes Obes Metab. 2024 Nov;26(11):5272-5282. doi: 10.1111/dom.15879. Epub 2024 Aug 19.
7
Unraveling the complex connection between ketone bodies and insulin resistance.
Acta Physiol (Oxf). 2024 Feb;240(2):e14077. doi: 10.1111/apha.14077. Epub 2023 Dec 22.
8
Physiologic Adaptation to Macronutrient Change Distorts Findings from Short Dietary Trials: Reanalysis of a Metabolic Ward Study.
J Nutr. 2024 Apr;154(4):1080-1086. doi: 10.1016/j.tjnut.2023.12.017. Epub 2023 Dec 19.
9
Association between Impaired Ketogenesis and Metabolic-Associated Fatty Liver Disease.
Biomolecules. 2023 Oct 11;13(10):1506. doi: 10.3390/biom13101506.
10
Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases.
Biology (Basel). 2023 Oct 5;12(10):1311. doi: 10.3390/biology12101311.

本文引用的文献

1
Abnormal hepatic energy homeostasis in type 2 diabetes.
Hepatology. 2009 Oct;50(4):1079-86. doi: 10.1002/hep.23093.
2
Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.
J Biol Chem. 2009 Aug 21;284(34):22840-52. doi: 10.1074/jbc.M109.032888. Epub 2009 Jun 24.
3
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10853-8. doi: 10.1073/pnas.0904187106. Epub 2009 Jun 16.
4
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity.
Endocrinology. 2009 Sep;150(9):4084-93. doi: 10.1210/en.2009-0221. Epub 2009 May 21.
5
Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding.
Cardiovasc Res. 2009 May 1;82(2):351-60. doi: 10.1093/cvr/cvp017. Epub 2009 Jan 15.
7
Sequential responses to high-fat and high-calorie feeding in an obese mouse model.
Obesity (Silver Spring). 2008 May;16(5):972-8. doi: 10.1038/oby.2008.32. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验