Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
Annu Rev Biochem. 2010;79:507-36. doi: 10.1146/annurev.biochem.030508.152103.
Most methanogenic archaea reduce CO(2) with H(2) to CH(4). For the activation of H(2), they use different [NiFe]-hydrogenases, namely energy-converting [NiFe]-hydrogenases, heterodisulfide reductase-associated [NiFe]-hydrogenase or methanophenazine-reducing [NiFe]-hydrogenase, and F(420)-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]-hydrogenase (instead of F(420)-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH(2)-, one S-CH(2)-, and a sp(2)-hybridized pyridinol nitrogen. Ligation of the iron is thus similar to that of the low-spin iron in the binuclear active-site metal center of [NiFe]- and [FeFe]-hydrogenases. Putative genes for the synthesis of the FeGP cofactor have been identified. The formation of methane from 4 H(2) and CO(2) catalyzed by methanogenic archaea is being discussed as an efficient means to store H(2).
大多数产甲烷古菌利用 H2 将 CO2 还原为 CH4。为了激活 H2,它们使用不同的[NiFe]-氢化酶,即能量转换[NiFe]-氢化酶、异二硫化物还原酶相关[NiFe]-氢化酶或甲烷吩嗪还原[NiFe]-氢化酶和 F420 还原[NiFe]-氢化酶。能量转换[NiFe]-氢化酶与呼吸链的复合体 I 在系统发育上相关。在镍限制条件下,一些产甲烷菌合成一种镍独立的[Fe]-氢化酶(而不是 F420 还原[NiFe]-氢化酶),从而降低了它们对镍的需求。[Fe]-氢化酶含有独特的铁鸟嘌呤吡啶醇辅因子(FeGP 辅因子),其中低自旋铁由两个 CO、一个 C(O)CH2-、一个 S-CH2-和一个 sp2-杂化的吡啶醇氮配位。因此,铁的配位类似于双核活性位点金属中心中 NiFe]-和[FeFe]-氢化酶中低自旋铁的配位。已经鉴定出合成 FeGP 辅因子的假定基因。产甲烷古菌将 4 H2 和 CO2 催化转化为甲烷的过程被认为是一种有效存储 H2 的方法。