Suppr超能文献

产甲烷古菌中 [Fe]-氢化酶的铁-鸟苷酰吡啶醇辅因子的生物合成通过稳定同位素标记阐明。

Biosynthesis of the iron-guanylylpyridinol cofactor of [Fe]-hydrogenase in methanogenic archaea as elucidated by stable-isotope labeling.

机构信息

Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany.

出版信息

J Am Chem Soc. 2012 Feb 15;134(6):3271-80. doi: 10.1021/ja211594m. Epub 2012 Feb 6.

Abstract

[Fe]-hydrogenase catalyzes the reversible hydride transfer from H(2) to methenyltetrahydromethanoptherin, which is an intermediate in methane formation from H(2) and CO(2) in methanogenic archaea. The enzyme harbors a unique active site iron-guanylylpyridinol (FeGP) cofactor, in which a low-spin Fe(II) is coordinated by a pyridinol-N, an acyl group, two carbon monoxide, and the sulfur of the enzyme's cysteine. Here, we studied the biosynthesis of the FeGP cofactor by following the incorporation of (13)C and (2)H from labeled precursors into the cofactor in growing methanogenic archaea and by subsequent NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and IR analysis of the isolated cofactor and reference compounds. The pyridinol moiety of the cofactor was found to be synthesized from three C-1 of acetate, two C-2 of acetate, two C-1 of pyruvate, one carbon from the methyl group of l-methionine, and one carbon directly from CO(2). The metabolic origin of the two CO-ligands was CO(2) rather than C-1 or C-2 of acetate or pyruvate excluding that the two CO are derived from dehydroglycine as has previously been shown for the CO-ligands in [FeFe]-hydrogenases. A formation of CO from CO(2) via direct reduction catalyzed by a nickel-dependent CO dehydrogenase or from formate could also be excluded. When the cells were grown in the presence of (13)CO, the two CO-ligands and the acyl group became (13)C-labeled, indicating either that free CO is an intermediate in their synthesis or that free CO can exchange with these iron-bound ligands. Based on these findings, we propose pathways for how the FeGP cofactor might be synthesized.

摘要

[Fe]-氢化酶催化可逆氢化物从 H(2)转移到亚甲基四氢甲酚,这是产甲烷古菌中 H(2)和 CO(2)形成甲烷的中间产物。该酶含有独特的活性位点铁-鸟苷基吡啶醇(FeGP)辅因子,其中低自旋 Fe(II)由吡啶醇-N、酰基、两个一氧化碳和酶半胱氨酸的硫配位。在这里,我们通过跟踪标记前体中 (13)C 和 (2)H 掺入生长的产甲烷古菌中的辅因子,以及随后对分离的辅因子和参考化合物进行 NMR、基质辅助激光解吸/电离飞行时间质谱 (MALDI-TOF-MS)、电喷雾电离傅里叶变换离子回旋共振质谱 (ESI-FT-ICR-MS) 和 IR 分析,研究了 FeGP 辅因子的生物合成。辅因子的吡啶醇部分来自于乙酸的三个 C-1、乙酸的两个 C-2、丙酮酸的两个 C-1、l-蛋氨酸的甲基的一个碳和直接来自 CO(2)的一个碳。两个 CO 配体的代谢来源是 CO(2),而不是乙酸或丙酮酸的 C-1 或 C-2,这排除了两个 CO 来自脱水甘氨酸,如以前在 [FeFe]-氢化酶的 CO 配体中所示。也可以排除 CO 从 CO(2)通过镍依赖的 CO 脱氢酶直接还原形成或从甲酸盐形成。当细胞在 (13)CO 存在下生长时,两个 CO 配体和酰基基团被 (13)C 标记,这表明游离 CO 是它们合成的中间产物,或者游离 CO 可以与这些铁结合的配体交换。基于这些发现,我们提出了 FeGP 辅因子可能的合成途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验