Suppr超能文献

迈向人工产甲烷:[Fe]-氢化酶辅因子的生物合成和半合成氢化酶的表征。

Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase.

机构信息

Max-Planck-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany.

出版信息

Faraday Discuss. 2017 Jun 2;198:37-58. doi: 10.1039/c6fd00209a.

Abstract

The greenhouse gas and energy carrier methane is produced on Earth mainly by methanogenic archaea. In the hydrogenotrophic methanogenic pathway the reduction of one CO to one methane molecule requires four molecules of H containing eight electrons. Four of the electrons from two H are supplied for reduction of an electron carrier F, which is catalyzed by F-reducing [NiFe]-hydrogenase under nickel-sufficient conditions. The same reaction is catalysed under nickel-limiting conditions by [Fe]-hydrogenase coupled with a reaction catalyzed by F-dependent methylene tetrahydromethanopterin dehydrogenase. [Fe]-hydrogenase contains an iron-guanylylpyridinol (FeGP) cofactor for H activation at the active site. Fe of FeGP is coordinated to a pyridinol-nitrogen, an acyl-carbon, two CO and a cysteine-thiolate. We report here on comparative genomic analyses of biosynthetic genes of the FeGP cofactor, which are primarily located in a hmd-co-occurring (hcg) gene cluster. One of the gene products is HcgB which transfers the guanosine monophosphate (GMP) moiety from guanosine triphosphate (GTP) to a pyridinol precursor. Crystal structure analysis of HcgB from Methanococcus maripaludis and its complex with 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol confirmed the physiological guanylyltransferase reaction. Furthermore, we tested the properties of semi-synthetic [Fe]-hydrogenases using the [Fe]-hydrogenase apoenzyme from several methanogenic archaea and a mimic of the FeGP cofactor. On the basis of the enzymatic reactions involved in the methanogenic pathway, we came up with an idea how the methanogenic pathway could be simplified to develop an artificial methanogenesis system.

摘要

温室气体和能源载体甲烷主要由产甲烷古菌在地球上产生。在氢营养型产甲烷途径中,将一个 CO 还原为一个甲烷分子需要四个含有 8 个电子的 H 分子。两个 H 分子中的四个电子用于还原电子载体 F,F 还原由镍充足条件下的 F 还原[NiFe]-氢化酶催化。在镍限制条件下,同样的反应由[Fe]-氢化酶与 F 依赖性亚甲基四氢甲酰四氢叶酸脱氢酶催化的反应偶联催化。[Fe]-氢化酶在活性部位含有一个用于 H 活化的铁-鸟苷基吡啶醇(FeGP)辅因子。FeGP 的 Fe 与吡啶醇氮、酰基碳、两个 CO 和半胱氨酸硫醇配位。我们在此报告 FeGP 辅因子生物合成基因的比较基因组分析,这些基因主要位于 hmd 共发生(hcg)基因簇中。其中一个基因产物是 HcgB,它将鸟苷三磷酸(GTP)的鸟苷单磷酸(GMP)部分转移到吡啶醇前体上。来自 Methanococcus maripaludis 的 HcgB 的晶体结构分析及其与 6-羧甲基-3,5-二甲基-4-羟基-2-吡啶醇的复合物证实了生理上的鸟苷基转移酶反应。此外,我们使用几种产甲烷古菌的[Fe]-氢化酶脱辅基酶和 FeGP 辅因子的模拟物测试了半合成[Fe]-氢化酶的性质。根据产甲烷途径中涉及的酶反应,我们提出了一个想法,即如何简化产甲烷途径以开发人工产甲烷系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验