Suppr超能文献

基于最大似然估计和 CLEAN 技术的稀疏阵列 3-D ISAR 成像。

Sparse array 3-D ISAR imaging based on maximum likelihood estimation and CLEAN technique.

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077.

出版信息

IEEE Trans Image Process. 2010 Aug;19(8):2127-42. doi: 10.1109/TIP.2010.2045711. Epub 2010 Mar 15.

Abstract

Large 2-D sparse array provides high angular resolution microwave images but artifacts are also induced by the high sidelobes of the beam pattern, thus, limiting its dynamic range. CLEAN technique has been used in the literature to extract strong scatterers for use in subsequent signal cancelation (artifacts removal). However, the performance of DFT parameters estimation based CLEAN algorithm for the estimation of the signal amplitudes is known to be poor, and this affects the signal cancelation. In this paper, DFT is used only to provide the initial estimates, and the maximum likelihood parameters estimation method with steepest descent implementation is then used to improve the precision of the calculated scatterers positions and amplitudes. Time domain information is also used to reduce the sidelobe levels. As a result, clear, artifact-free images could be obtained. The effects of multiple reflections and rotation speed estimation error are also discussed. The proposed method has been verified using numerical simulations and it has been shown to be effective.

摘要

大型二维稀疏阵列提供了高角度分辨率的微波图像,但波束模式的高旁瓣也会产生伪影,从而限制了其动态范围。文献中已经使用 CLEAN 技术提取强散射体,用于后续的信号消除(伪影去除)。然而,基于 DFT 参数估计的 CLEAN 算法在估计信号幅度方面的性能较差,这会影响信号消除。在本文中,DFT 仅用于提供初始估计,然后使用具有最陡下降实现的最大似然参数估计方法来提高计算出的散射体位置和幅度的精度。还利用时域信息来降低旁瓣电平。因此,可以获得清晰、无伪影的图像。还讨论了多次反射和转速估计误差的影响。该方法已通过数值模拟进行验证,结果表明该方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验