Schlumberger WesternGeco, Houston, TX, USA.
IEEE Trans Image Process. 2012 May;21(5):2735-46. doi: 10.1109/TIP.2012.2183881. Epub 2012 Jan 11.
Autofocus algorithms are used to restore images in nonideal synthetic aperture radar imaging systems. In this paper, we propose a bilinear parametric model for the unknown image and the nuisance phase parameters and derive an efficient maximum-likelihood autofocus (MLA) algorithm. In the special case of a simple image model and a narrow range of look angles, MLA coincides with the successful multichannel autofocus (MCA). MLA can be interpreted as a generalization of MCA to a larger class of models with a larger range of look angles. We analyze its advantages over previous extensions of MCA in terms of identifiability conditions and noise sensitivity. As a byproduct, we also propose numerical approximations to the difficult constant modulus quadratic program that lies at the core of these algorithms. We demonstrate the superior performance of our proposed methods using computer simulations in both the correct and mismatched system models. MLA performs better than other methods, both in terms of the mean squared error and visual quality of the restored image.
自动对焦算法用于恢复非理想合成孔径雷达成像系统中的图像。在本文中,我们提出了一种用于未知图像和杂相参数的双线性参数模型,并推导出一种有效的最大似然自动对焦(MLA)算法。在简单图像模型和小视角范围的特殊情况下,MLA 与成功的多通道自动对焦(MCA)一致。MLA 可以被解释为 MCA 的一种推广,适用于更大类别的模型和更大的视角范围。我们根据可识别条件和噪声敏感性来分析其相对于 MCA 之前扩展的优势。作为副产品,我们还针对这些算法核心的困难的恒模二次规划提出了数值逼近。我们使用正确和不匹配系统模型的计算机模拟证明了我们提出的方法的优越性能。MLA 在均方误差和恢复图像的视觉质量方面都优于其他方法。