Suppr超能文献

无翅滑翔蚂蚁(Cephalotes atratus)的空中机动能力。

Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus).

机构信息

Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.

出版信息

Proc Biol Sci. 2010 Jul 22;277(1691):2199-204. doi: 10.1098/rspb.2010.0170. Epub 2010 Mar 17.

Abstract

In contrast to the patagial membranes of gliding vertebrates, the aerodynamic surfaces used by falling wingless ants to direct their aerial descent are unknown. We conducted ablation experiments to assess the relative contributions of the hindlegs, midlegs and gaster to gliding success in workers of the Neotropical arboreal ant Cephalotes atratus (Hymenoptera: Formicidae). Removal of hindlegs significantly reduced the success rate of directed aerial descent as well as the glide index for successful flights. Removal of the gaster alone did not significantly alter performance relative to controls. Equilibrium glide angles during successful targeting to vertical columns were statistically equivalent between control ants and ants with either the gaster or the hindlegs removed. High-speed video recordings suggested possible use of bilaterally asymmetric motions of the hindlegs to effect body rotations about the vertical axis during targeting manoeuvre. Overall, the control of gliding flight was remarkably robust to dramatic anatomical perturbations, suggesting effective control mechanisms in the face of adverse initial conditions (e.g. falling upside down), variable targeting decisions and turbulent wind gusts during flight.

摘要

与滑翔脊椎动物的翼膜不同,无翅跌落蚂蚁在引导其空中下降时所使用的空气动力表面尚不清楚。我们进行了消融实验,以评估在新热带树栖蚂蚁 Cephalotes atratus(膜翅目:蚁科)的工蚁中,后腿、中腿和腹部对滑翔成功的相对贡献。后腿的去除显著降低了定向空中下降的成功率以及成功飞行的滑翔指数。单独去除腹部与对照相比,性能没有明显改变。在成功定位到垂直柱期间,平衡滑翔角度在对照蚂蚁和去除腹部或后腿的蚂蚁之间在统计学上是相等的。高速视频记录表明,后腿可能会以双侧不对称的方式运动,从而在瞄准过程中绕垂直轴进行身体旋转。总的来说,滑翔飞行的控制对剧烈的解剖学干扰具有很强的鲁棒性,这表明在不利的初始条件(例如倒着掉落)、可变的瞄准决策和飞行时的阵风干扰下,存在有效的控制机制。

相似文献

1
Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus).
Proc Biol Sci. 2010 Jul 22;277(1691):2199-204. doi: 10.1098/rspb.2010.0170. Epub 2010 Mar 17.
2
Directed aerial descent in canopy ants.
Nature. 2005 Feb 10;433(7026):624-6. doi: 10.1038/nature03254.
3
The descent of ant: field-measured performance of gliding ants.
J Exp Biol. 2015 May;218(Pt 9):1393-401. doi: 10.1242/jeb.106914. Epub 2015 Mar 18.
4
Evolution and ecology of directed aerial descent in arboreal ants.
Integr Comp Biol. 2011 Dec;51(6):944-56. doi: 10.1093/icb/icr006. Epub 2011 May 11.
6
Water surface locomotion in tropical canopy ants.
J Exp Biol. 2014 Jun 15;217(Pt 12):2163-70. doi: 10.1242/jeb.101600.
7
Gliding hexapods and the origins of insect aerial behaviour.
Biol Lett. 2009 Aug 23;5(4):510-2. doi: 10.1098/rsbl.2009.0029. Epub 2009 Mar 18.
8
Arachnid aloft: directed aerial descent in neotropical canopy spiders.
J R Soc Interface. 2015 Sep 6;12(110):0534. doi: 10.1098/rsif.2015.0534.

引用本文的文献

1
Jumping up a level: Target distance and angle estimation facilitates successful landing in a jumping glass katydid.
iScience. 2025 May 23;28(6):112738. doi: 10.1016/j.isci.2025.112738. eCollection 2025 Jun 20.
2
Aerodynamic and Inertial Loading Effects of Insect-Inspired Appendages in Small Unmanned Aerial Vehicles.
Biomimetics (Basel). 2025 Jan 2;10(1):22. doi: 10.3390/biomimetics10010022.
3
Biomechanics and ontogeny of gliding in wingless stick insect nymphs (Extatosoma tiaratum).
J Exp Biol. 2024 Dec 15;227(24). doi: 10.1242/jeb.247805. Epub 2024 Dec 16.
4
Wax "tails" enable planthopper nymphs to self-right midair and land on their feet.
bioRxiv. 2024 Apr 16:2024.04.15.589523. doi: 10.1101/2024.04.15.589523.
6
A Year at the Forefront of Gliding Locomotion.
Biol Open. 2023 Aug 15;12(8). doi: 10.1242/bio.059973.
7
Directional takeoff, aerial righting, and adhesion landing of semiaquatic springtails.
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2211283119. doi: 10.1073/pnas.2211283119. Epub 2022 Nov 7.
8
Leg or antenna injury in ants impairs survival but does not hinder searching for food.
Curr Zool. 2021 Mar 15;68(4):441-450. doi: 10.1093/cz/zoab027. eCollection 2022 Aug.
10
Passive Cushiony Biomechanics of Head Protection in Falling Geckos.
Appl Bionics Biomech. 2018 Feb 19;2018:9857894. doi: 10.1155/2018/9857894. eCollection 2018.

本文引用的文献

1
Gliding hexapods and the origins of insect aerial behaviour.
Biol Lett. 2009 Aug 23;5(4):510-2. doi: 10.1098/rsbl.2009.0029. Epub 2009 Mar 18.
2
Parasite-induced fruit mimicry in a tropical canopy ant.
Am Nat. 2008 Apr;171(4):536-44. doi: 10.1086/528968.
4
The rise of the ants: a phylogenetic and ecological explanation.
Proc Natl Acad Sci U S A. 2005 May 24;102(21):7411-4. doi: 10.1073/pnas.0502264102. Epub 2005 May 17.
5
Directed aerial descent in canopy ants.
Nature. 2005 Feb 10;433(7026):624-6. doi: 10.1038/nature03254.
6
Explaining the abundance of ants in lowland tropical rainforest canopies.
Science. 2003 May 9;300(5621):969-72. doi: 10.1126/science.1082074.
7
Effects of birds on the intensity of ant rain: a terrestrial form of invertebrate drift.
Anim Behav. 1997 Jul;54(1):89-97. doi: 10.1006/anbe.1996.0428.
8
Initiation of behavior by single neurons: the role of behavioral context.
Science. 1984 Nov 23;226(4677):992-4. doi: 10.1126/science.6505681.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验