Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.
J Neurosci. 2010 Mar 17;30(11):3886-95. doi: 10.1523/JNEUROSCI.0055-10.2010.
Metabolic perturbations that decrease or limit blood glucose-such as fasting or adhering to a ketogenic diet-reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A(1) receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K(+) channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A(1) receptors coupled to ATP-sensitive K(+) channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS.
代谢紊乱会降低或限制血糖水平,例如禁食或遵循生酮饮食,从而显著减少癫痫发作。迄今为止,代谢改变与神经元活动减少之间的关键联系仍不清楚。更普遍地说,代谢变化伴随着许多中枢神经系统疾病,嘌呤核苷酸 ATP 及其核心分子腺苷有望将细胞能量转化为改变的神经元活动。在这里,我们表明代谢的非病理性变化会诱导海马 CA3 锥体神经元兴奋性的嘌呤能自身调节。在细胞内 ATP 充足的情况下,降低细胞外葡萄糖会直接从 CA3 神经元中诱导连接蛋白 1 半通道介导的 ATP 释放。这种细胞外 ATP 被去磷酸化为腺苷,激活神经元腺苷 A1 受体,并且出人意料的是,通过 ATP 敏感性 K+通道使神经元膜电位超极化。这些数据共同描绘了在海马易发生癫痫发作的亚区中通过 ATP 和腺苷的自分泌调节神经元兴奋性,并为葡萄糖减少和癫痫发作阈值增加之间的关系提供了新的机制见解。通过建立通过连接蛋白半通道的神经元 ATP 释放,以及与 ATP 敏感性 K+通道偶联的海马腺苷 A1 受体,我们揭示了代谢与神经元活动之间关系的详细信息,并为中枢神经系统中的腺苷为基础的治疗提供了新的策略。