Suppr超能文献

体内异亮氨酸、缬氨酸和苯丙氨酸对非同源tRNA的反密码子依赖性氨酰化作用。

Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo.

作者信息

Pallanck L, Schulman L H

机构信息

Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, Bronx, NY 10461.

出版信息

Proc Natl Acad Sci U S A. 1991 May 1;88(9):3872-6. doi: 10.1073/pnas.88.9.3872.

Abstract

An assay based on the initiation of protein synthesis in Escherichia coli has been used to explore the role of the anticodon in tRNA identity in vivo. Mutations were introduced into the initiator tRNA to change the wild-type anticodon from CAU (methionine) to GAU (isoleucine), GAC (valine), and GAA (phenylalanine), where each derivative differs from the preceding by a single base change in the anticodon (underlined). These changes were sufficient to cause the mutant tRNAs to be aminoacylated by the corresponding aminoacyl-tRNA synthetases based on the amino acid inserted into protein from complementary initiation codons. Construction of additional single base anticodon variants (GUU, GGU, GCC, GUC, GCA, and UAA) showed that all three anticodon bases specify isoleucine and phenylalanine identity and that both the middle and the third anticodon bases are important for valine identity in vivo.

摘要

一种基于大肠杆菌中蛋白质合成起始的检测方法已被用于探索反密码子在体内tRNA特异性识别中的作用。将突变引入起始tRNA,把野生型反密码子从CAU(甲硫氨酸)改变为GAU(异亮氨酸)、GAC(缬氨酸)和GAA(苯丙氨酸),其中每个衍生物的反密码子(下划线部分)与前一个仅相差一个碱基变化。这些变化足以使突变的tRNA根据从互补起始密码子插入蛋白质中的氨基酸,被相应的氨酰-tRNA合成酶进行氨酰化。构建额外的单碱基反密码子变体(GUU、GGU、GCC、GUC、GCA和UAA)表明,所有三个反密码子碱基都决定异亮氨酸和苯丙氨酸的特异性识别,并且反密码子的中间碱基和第三个碱基在体内对缬氨酸的特异性识别都很重要。

相似文献

1
Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo.
Proc Natl Acad Sci U S A. 1991 May 1;88(9):3872-6. doi: 10.1073/pnas.88.9.3872.
4
Anticodon switching changes the identity of methionine and valine transfer RNAs.
Science. 1988 Nov 4;242(4879):765-8. doi: 10.1126/science.3055296.
5
Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
J Bacteriol. 1992 Dec;174(23):7819-26. doi: 10.1128/jb.174.23.7819-7826.1992.
8
Initiation of in vivo protein synthesis with non-methionine amino acids.
Biochemistry. 1990 May 8;29(18):4263-8. doi: 10.1021/bi00470a001.
9
Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase.
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2246-50. doi: 10.1073/pnas.74.6.2246.

引用本文的文献

1
Cys-tRNAj as a Second Translation Initiator for Priming Proteins with Cysteine in Bacteria.
ACS Omega. 2025 Jan 29;10(5):4548-4560. doi: 10.1021/acsomega.4c08326. eCollection 2025 Feb 11.
2
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
3
Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications.
Front Bioeng Biotechnol. 2022 Jul 1;10:918659. doi: 10.3389/fbioe.2022.918659. eCollection 2022.
4
The Potential of a Protein Model Synthesized Absent of Methionine.
Molecules. 2022 Jun 8;27(12):3679. doi: 10.3390/molecules27123679.
5
Hijacking Translation Initiation for Synthetic Biology.
Chembiochem. 2020 May 15;21(10):1387-1396. doi: 10.1002/cbic.202000017. Epub 2020 Mar 2.
6
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
ACS Synth Biol. 2016 Feb 19;5(2):163-71. doi: 10.1021/acssynbio.5b00197. Epub 2015 Nov 20.
7
tRNA anticodon shifts in eukaryotic genomes.
RNA. 2014 Mar;20(3):269-81. doi: 10.1261/rna.041681.113. Epub 2014 Jan 17.
9
An extensive study of mutation and selection on the wobble nucleotide in tRNA anticodons in fungal mitochondrial genomes.
J Mol Evol. 2008 May;66(5):484-93. doi: 10.1007/s00239-008-9102-8. Epub 2008 Apr 10.
10
Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
Nucleic Acids Res. 1992 Apr 11;20(7):1547-52. doi: 10.1093/nar/20.7.1547.

本文引用的文献

2
Dual specificity of su+ 7 tRNA. Evidence for translational discrimination.
J Mol Biol. 1980 Jun 5;139(4):705-20. doi: 10.1016/0022-2836(80)90056-x.
3
Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
Biochemistry. 1982 Aug 17;21(17):3921-6. doi: 10.1021/bi00260a003.
5
Nucleotide sequence of the E coli gene coding for dihydrofolate reductase.
Nucleic Acids Res. 1980 May 24;8(10):2255-74. doi: 10.1093/nar/8.10.2255.
7
Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA.
Biochemistry. 1985 Apr 23;24(9):2354-60. doi: 10.1021/bi00330a034.
9
Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA.
Proc Natl Acad Sci U S A. 1986 Sep;83(17):6548-52. doi: 10.1073/pnas.83.17.6548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验