Universität Regensburg, Germany.
Br J Math Stat Psychol. 2010 May;63(Pt 2):341-60. doi: 10.1348/000711009X465647.
The a(d) coefficient was developed to measure the within-group agreement of ratings. The underlying theory as well as the construction of the coefficient are explained. The a(d) coefficient ranges from 0 to 1, regardless of the number of scale points, raters, or items. With some limitations the measure of the within-group agreement of different groups and groups from different studies is directly comparable. For statistical significance testing, the binomial distribution is introduced as a model of the ratings' random distribution given the true score of a group construct. This method enables a decision about essential agreement and not only about a significant difference from 0 or a chosen critical value. The a(d) coefficient identifies a single true score within a group. It is not provided for multiple true score settings. The comparison of the a(d) coefficient with other agreement indices shows that the new coefficient is in line with their outcomes, but does not result in infinite or inappropriate values.
a(d) 系数用于衡量评分者内部的一致性。本文解释了该系数的理论基础和构建方法。无论量表的点数、评分者或项目数量如何,a(d) 系数的取值范围均为 0 到 1。在某些限制条件下,不同组和来自不同研究的组的一致性测量可以直接比较。为了进行统计显著性检验,本文引入二项分布作为评分随机分布的模型,假设组构的真实分数已知。这种方法可以帮助我们判断一致性是否显著,而不仅仅是与 0 或选定的临界值是否存在显著差异。a(d) 系数在组内确定一个真实分数。它不适用于多个真实分数的设置。与其他一致性指标的比较表明,新系数与其他指标的结果一致,但不会产生无穷大或不适当的值。