Machine Learning Laboratory, Berlin Institute of Technology, Germany.
Neuroimage. 2010 Jul 15;51(4):1303-9. doi: 10.1016/j.neuroimage.2010.03.022. Epub 2010 Mar 17.
Brain-computer interfaces (BCIs) allow a user to control a computer application by brain activity as measured, e.g., by electroencephalography (EEG). After about 30years of BCI research, the success of control that is achieved by means of a BCI system still greatly varies between subjects. For about 20% of potential users the obtained accuracy does not reach the level criterion, meaning that BCI control is not accurate enough to control an application. The determination of factors that may serve to predict BCI performance, and the development of methods to quantify a predictor value from psychological and/or physiological data serve two purposes: a better understanding of the 'BCI-illiteracy phenomenon', and avoidance of a costly and eventually frustrating training procedure for participants who might not obtain BCI control. Furthermore, such predictors may lead to approaches to antagonize BCI illiteracy. Here, we propose a neurophysiological predictor of BCI performance which can be determined from a two minute recording of a 'relax with eyes open' condition using two Laplacian EEG channels. A correlation of r=0.53 between the proposed predictor and BCI feedback performance was obtained on a large data base with N=80 BCI-naive participants in their first session with the Berlin brain-computer interface (BBCI) system which operates on modulations of sensory motor rhythms (SMRs).
脑机接口 (BCI) 允许用户通过大脑活动来控制计算机应用程序,例如通过脑电图 (EEG) 进行测量。经过大约 30 年的 BCI 研究,通过 BCI 系统实现的控制成功率在受试者之间仍然存在很大差异。对于大约 20%的潜在用户,获得的准确性未达到标准水平,这意味着 BCI 控制不够精确,无法控制应用程序。确定可能用于预测 BCI 性能的因素,以及开发从心理和/或生理数据中量化预测值的方法,有两个目的:更好地理解“BCI 文盲现象”,并避免对于可能无法获得 BCI 控制的参与者进行昂贵且最终令人沮丧的培训过程。此外,这种预测因素可能会导致对抗 BCI 文盲的方法。在这里,我们提出了一种 BCI 性能的神经生理学预测因子,可以通过使用两个拉普拉斯 EEG 通道记录两分钟的“睁眼放松”状态来确定。在具有 N=80 名 BCI 新手参与者的大型数据库中,基于操作于感觉运动节律 (SMR) 调制的柏林脑机接口 (BBCI) 系统,对第一个会话的 BCI 反馈性能进行了 r=0.53 的相关性分析。