Suppr超能文献

处理技术对脑机接口系统分类准确率的影响。

The Effect of Processing Techniques on the Classification Accuracy of Brain-Computer Interface Systems.

作者信息

Adolf András, Köllőd Csaba Márton, Márton Gergely, Fadel Ward, Ulbert István

机构信息

Roska Tamás Doctoral School of Sciences and Technology, Práter utca 50/a, 1083 Budapest, Hungary.

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, 1083 Budapest, Hungary.

出版信息

Brain Sci. 2024 Dec 18;14(12):1272. doi: 10.3390/brainsci14121272.

Abstract

: Accurately classifying Electroencephalography (EEG) signals is essential for the effective operation of Brain-Computer Interfaces (BCI), which is needed for reliable neurorehabilitation applications. However, many factors in the processing pipeline can influence classification performance. The objective of this study is to assess the effects of different processing steps on classification accuracy in EEG-based BCI systems. : This study explores the impact of various processing techniques and stages, including the FASTER algorithm for artifact rejection (AR), frequency filtering, transfer learning, and cropped training. The Physionet dataset, consisting of four motor imagery classes, was used as input due to its relatively large number of subjects. The raw EEG was tested with EEGNet and Shallow ConvNet. To examine the impact of adding a spatial dimension to the input data, we also used the Multi-branch Conv3D Net and developed two new models, Conv2D Net and Conv3D Net. : Our analysis showed that classification accuracy can be affected by many factors at every stage. Applying the AR method, for instance, can either enhance or degrade classification performance, depending on the subject and the specific network architecture. Transfer learning was effective in improving the performance of all networks for both raw and artifact-rejected data. However, the improvement in classification accuracy for artifact-rejected data was less pronounced compared to unfiltered data, resulting in reduced precision. For instance, the best classifier achieved 46.1% accuracy on unfiltered data, which increased to 63.5% with transfer learning. In the filtered case, accuracy rose from 45.5% to only 55.9% when transfer learning was applied. An unexpected outcome regarding frequency filtering was observed: networks demonstrated better classification performance when focusing on lower-frequency components. Higher frequency ranges were more discriminative for EEGNet and Shallow ConvNet, but only when cropped training was applied. : The findings of this study highlight the complex interaction between processing techniques and neural network performance, emphasizing the necessity for customized processing approaches tailored to specific subjects and network architectures.

摘要

准确分类脑电图(EEG)信号对于脑机接口(BCI)的有效运行至关重要,而这是可靠的神经康复应用所必需的。然而,处理流程中的许多因素会影响分类性能。本研究的目的是评估不同处理步骤对基于EEG的BCI系统中分类准确性的影响。

本研究探讨了各种处理技术和阶段的影响,包括用于伪迹去除(AR)的FASTER算法、频率滤波、迁移学习和裁剪训练。由于其受试者数量相对较多,由四个运动想象类别组成的Physionet数据集被用作输入。原始EEG使用EEGNet和浅卷积网络(Shallow ConvNet)进行测试。为了研究向输入数据添加空间维度的影响,我们还使用了多分支Conv3D网络,并开发了两个新模型,Conv2D网络和Conv3D网络。

我们的分析表明,每个阶段的许多因素都会影响分类准确性。例如,应用AR方法,根据受试者和特定的网络架构,分类性能可能会提高或降低。迁移学习对于提高所有网络对原始数据和去除伪迹后的数据的性能都是有效的。然而,与未滤波数据相比,去除伪迹后的数据的分类准确性提高不太明显,导致精度降低。例如,最佳分类器在未滤波数据上的准确率为46.1%,通过迁移学习提高到了63.5%。在滤波的情况下,应用迁移学习时,准确率仅从45.5%提高到了55.9%。观察到一个关于频率滤波的意外结果:当关注低频成分时,网络表现出更好的分类性能。较高频率范围对EEGNet和浅卷积网络更具判别力,但仅在应用裁剪训练时如此。

本研究的结果突出了处理技术与神经网络性能之间的复杂相互作用,强调了针对特定受试者和网络架构定制处理方法的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0332/11674661/b383a4024c54/brainsci-14-01272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验