Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Biophys J. 2010 Mar 17;98(6):951-8. doi: 10.1016/j.bpj.2009.11.022.
The effect of macromolecular crowding on the binding of ligands to a receptor near membranes is studied using Brownian dynamics simulations. The receptor is modeled as a reactive patch on a hard surface and the ligands and crowding agents are modeled as spheres that interact via a steep repulsive interaction potential. When a ligand collides with the patch, it reacts with probability p(rxn). The association rate constant (k(infinity)) can be decomposed into contributions from diffusion-limited (k(D)) and reaction-limited (k(R)) rates, i.e., 1/k(infinity) = 1/k(D) + 1/k(R). The simulations show that k(D) is a nonmonotonic function of the volume fraction of crowding agents for receptors of small sizes. k(R) is always an increasing function of the volume fraction of crowding agents, and the association rate constant k(infinity) determined from both contributions has a qualitatively different dependence on the macromolecular crowding for high and low values of the reaction probability p(rxn). The simulation results are used to predict the velocity of the membrane protrusion driven by actin filament elongation. Based on the simple model where the protrusive force on the membrane is generated by the intercalation of actin monomers between the membrane and actin filament ends, we predict that crowding increases the local concentration of actin monomers near the filament ends and hence accelerates the membrane protrusion.
使用布朗动力学模拟研究了大分子拥挤效应对膜附近受体与配体结合的影响。受体被建模为硬表面上的反应性斑块,配体和拥挤剂被建模为球体,它们通过陡峭的排斥相互作用势能相互作用。当配体与斑块碰撞时,它以概率 p(rxn)发生反应。结合速率常数 (k(infinity)) 可以分解为扩散限制 (k(D)) 和反应限制 (k(R)) 速率的贡献,即 1/k(infinity) = 1/k(D) + 1/k(R)。模拟表明,对于小尺寸的受体,k(D) 是拥挤剂体积分数的非单调函数。k(R) 始终是拥挤剂体积分数的递增函数,并且由这两个贡献确定的结合速率常数 k(infinity) 对于高和低反应概率 p(rxn)值具有不同的定性依赖性。模拟结果用于预测由肌动蛋白丝伸长驱动的膜突起的速度。基于膜上突起力是通过膜和肌动蛋白丝末端之间的肌动蛋白单体插入产生的简单模型,我们预测拥挤会增加肌动蛋白单体在丝末端附近的局部浓度,从而加速膜突起。